首页 | 官方网站   微博 | 高级检索  
     


Modified method for predicting lateral displacement of PVD-improved ground under combined vacuum and surcharge loading
Affiliation:1. School of Civil Engineering, Central South University, Changsha, 410075, China;2. School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200444, China;3. College of Civil Engineering, Henan University of Technology, Zhengzhou, 450001, China;4. School of Civil Engineering, Changsha University of Science & Technology, Changsha, 410114, China;1. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China;2. Centre for Ports and Maritime Safety, Dalian Maritime University, Dalian, China;1. Department of Civil Engineering, National Central University, Jhongli, Taiwan, ROC;2. Department of Mass Rapid Transit, Sinotech Engineering Consultant, Ltd, Taipei, Taiwan, ROC;1. VNU Key Laboratory of Geo-environment and Climate Change Response, University of Science, Vietnam National University, Hanoi, Viet Nam;2. Faculty of Advanced Science and Technology, Kumamoto University, Japan;3. Vietnam Japan University, Vietnam National University, Hanoi, Viet Nam;4. Faculty of Geology, University of Science, Vietnam National University, Hanoi, Viet Nam
Abstract:A modified method is proposed to predict the lateral displacement (δ) of prefabricated vertical drains (PVDs) improved ground under combined vacuum and surcharge loads, which is derived based on a few modified triaxial tests and a series of finite element analyses of PVD unit cells. It is observed that reducing the surcharge load (ps) and loading rate (LR) and increasing the vacuum pressure (pv), pre-vacuum consolidation period (tv), and initial undrained shear strength (su0) could be effective in controlling the outward δ. Variations of the effective stress ratio (Ke) that controlling the δ with ps, pv, LR, tv, and su0 are then presented. A synthetic relationship between the normalized horizontal strain (εh) by a reference one-dimensional vertical strain (εv1) and the normalized Ke by the at-rest earth pressure coefficient (K0) is proposed for cases with and without tv. Further, a modified index parameter (β1) is introduced for quantitatively considering the effect of ps, pv, LR, tv, su0, and consolidation properties of the soil, a relationship between Ke and β1 is then established for evaluating the value of Ke. Combinations of the εh/εv1Ke/K0 and Keβ1 relationships enable modified predictions of the δ from basic preloading conditions and soil parameters.
Keywords:Geosynthetics  Prefabricated vertical drain  Ground improvement  Lateral displacement  Finite element analysis  Combined preloading
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号