首页 | 官方网站   微博 | 高级检索  
     


Influence of density on the post-suffusion behavior of gap-graded sand with fines
Affiliation:1. Institute of Industrial Science, The University of Tokyo, Tokyo, Japan;2. Department of Civil Engineering, National University of Computer and Emerging Sciences, Lahore, Pakistan
Abstract:Suffusion erosion, characterized as the selective detachment and transportation of finer particles by seepage flow, is hazardous to the stability and serviceability of geotechnical structures. The removal of finer particles deteriorates the structure and fabric of the soil, leading to the degradation of its mechanical properties. Studies into the effects of suffusion on mechanical behavior have so far produced disparate results depending on the pre-erosion relative density of the specimens tested. To investigate this issue, small cyclic and monotonic loading tests were performed on intact and eroded gap-graded silty sand specimens in three dispersed density states, using a triaxial cell modified for the purpose of erosion. The variation of Young's modulus showed an inverse relationship with the pre-erosion density of the specimen, as the small strain stiffness decreased in the dense cases and increased in the loose cases. Conversely, Poisson's ratio increased in value as suffusion progressed regardless of the initial density of the specimens. In the contractive phase of monotonic loading, the densification of the coarse soil skeleton by the downward seepage flow resulted in a decrease in contractiveness and an increase in secant stiffness. In the dilative phase, the increase in porosity by the erosion of finer particles reduced the dilatancy and peak strength of the specimens. The results suggest that the pre-suffusion density determines the primary locus of affected mechanical behavior in triaxial compression, which shifts from the contractive phase to the dilative phase with the increase in pre-suffusion density. The critical state strength, inferred using stress–dilatancy theory, was largely unaffected by the erosion of finer particles. As the results indicate, pre-erosion density may be of practical significance in assessing the vulnerability to deterioration and collapse of geotechnical formations and structures subjected to suffusion erosion.
Keywords:Suffusion  Internal erosion  Mechanical behavior  Gap-graded  Monotonic loading  Small cyclic loading
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号