首页 | 官方网站   微博 | 高级检索  
     


Bacterial community shifts in nonylphenol polyethoxylates-enriched activated sludge
Authors:Lozada Mariana  Itria R F Raúl F  Figuerola E L M Eva L M  Babay P A Paola A  Gettar R T Raquel T  de Tullio L A Luis A  Erijman Leonardo
Affiliation:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina.
Abstract:A molecular approach was used to evaluate the effect of nonylphenol ethoxylate surfactants on the bacterial diversity in lab-scale activated sludge reactors. Separate bench-scale units were fed synthetic wastewater with and without addition of branched nonylphenol ethoxylates (NPnEO). The performance of the reactors, in terms of carbonaceous removal was largely unaffected by the presence of NP10EO in the feeding solution. However, addition of NP10EO exerted a pronounced shift in bacterial community composition. In situ hybridization analyzing larger phylogenetic groups of bacteria with ribosomal RNA-targeted oligonucleotide probes revealed the dominance of clusters composed of Betaproteobacteria, accounting for up to one-third of 4',6-diamidino-2-phenylindol-dihydrochloride (DAPI)-stained cells in NP10EO amended reactors and only 5% of DAPI-stained cells in the controls. These shifts in populations of larger phylogenetic groups were confirmed by dot-blot analysis of rRNA. Members of gamma subclass of Proteobacteria were present in low numbers in all activated sludge samples examined, suggesting that only bacteria affiliated with the beta subclass of Proteobacteria may have a specific role in NP10EO degradation.
Keywords:Nonionic surfactant  Nonylphenol ethoxylates  Activated sludge  Community structure  Fluorescence in situ hybridization  Betaproteobacteria
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号