首页 | 官方网站   微博 | 高级检索  
     


Performance review of a novel combined thermoelectric power generation and water desalination system
Affiliation:1. School of Energy and Environment, Southeast University, Nanjing 210096, China;2. Ministry of Education of Key Laboratory of Energy Thermal Conversion and Control, Southeast University, Nanjing 210096, China;3. Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, Southeast University, Nanjing 210096, China;1. Department of Food Engineering, URI – Campus de Erechim, Av. Sete de Setembro, 1621, Erechim, RS 99700-000, Brazil;2. Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, CEP 88800-000 Florianópolis, SC, Brazil;3. LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Rua Monteiro Lobato, 80, 13083-862 Campinas, SP, Brazil;4. Federal University of Fronteira Sul, Erechim, Av. Dom João Hoffmann, Erechim 99700-000, Brazil;5. Department of Chemical Engineering, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900, Brazil;1. School of Economics and Management, North China Electric Power University, Beijing 102206, China;2. School of Natural and Built Environments, University of South Australia, Adelaide 5001, Australia;1. Division of Engineering, Saint Mary''s University, Halifax, NS, B3H 3C3, Canada;2. Department of Electrical Engineering, Royal Military College, Kingston, ON, K7K 7B4, Canada;3. Department of Electrical Engineering, University of Nevada, Reno, USA
Abstract:A novel combined thermoelectric power generation and water desalination system is described with a system schematic. The proposed system utilises low grade thermal energy to heat thermoelectric generators for power generation and water desalination. A theoretical analysis presents the governing equations to estimate the systems performance characteristics combined with experimental validation. Experimental set-up consists of an electric heat source, thermoelectric modules, heat pipes, a heat sink and an evaporator vessel. Four heat pipes are embedded in a heat spreader block to passively cool the bottom side of the thermoelectric cells. The condenser of these four heat pipes is immersed in a pool of saline water stored in an evaporation vessel which is maintained at sub-atmospheric pressure. The liquid to vapour phase change cooling method achieve low saturation temperature and offers a high heat transfer coefficient for the cooling of the thermoelectric generators. At the same time this method utilises the low temperature heat extracted from the cold side of the thermoelectric generator for water desalination. It was observed that at low saturation temperatures greater heat flux could be supplied to the thermoelectric generators with less heat losses to the atmosphere.
Keywords:Thermoelectric generator  Phase change  Desalination  Heat pipes  Low grade heat  Passive cooling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号