首页 | 官方网站   微博 | 高级检索  
     


Hourly simulation and performance of solar electric-vapor compression refrigeration system
Authors:Mehmet Bilgili
Affiliation:1. Institute of Agricultural Engineering, Tropics and Subtropics Group, Universität Hohenheim (440e), Stuttgart 70599, Germany;2. Research Group of Applied Thermal Engineering (CREVER), University Rovira i Virgili, Avinguda Països Catalans 26, Tarragona, Spain
Abstract:A solar electric-vapor compression refrigeration (SE-VCR) system has been proposed in this study. The SE-VCR system was investigated for different evaporating temperatures and months in Adana city located in the southern region of Turkey. First, the hourly cooling load capacities (heat gain) of a sample building during the 23rd days of May, June, July, August and September months were determined by using meteorological data such as hourly average solar radiations and atmospheric temperatures. The hourly total heat gain of the sample building comprised of wall, window, humans, illumination and devices were determined by using the Cooling Load Hourly Analysis Program (HAP) 4.4. Then, the hourly variations of various parameters such as coefficient of the performance, condenser capacity and compressor power consumption were calculated. In addition, the minimum photovoltaic panel surface area was determined to meet the compressor power demand according to the hourly average solar radiation data. For evaporating temperature Te = 0 °C, the maximum compressor power consumption was obtained as 2.53 kW at 15:00 PM on August 23. The required photovoltaic panel surface area was found to be around 31.26 m2. It was determined that the SE-VCR system could be used for home/office-cooling purposes during the day in the southern region of Turkey.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号