首页 | 官方网站   微博 | 高级检索  
     


Effect of nickel-phosphorus interactions on structural integrity of anode-supported solid oxide fuel cells
Authors:Wenning Liu  Larry R Pederson  Olga A Marina  Moe A Khaleel
Affiliation:Pacific Northwest National Laboratory, Richland, WA 99352, United States
Abstract:An integrated experimental/modeling approach was utilized to assess the structural integrity of Ni-yttria-stabilized zirconia (YSZ) porous anode supports during the solid oxide fuel cell (SOFC) operation on coal gas containing trace amounts of phosphorus impurities. Phosphorus was chosen as a typical impurity exhibiting strong interactions with the nickel followed by second phase formation. Tests were performed using Ni-YSZ anode-supported button cells exposed to 0.5-10 ppm of phosphine in synthetic coal gas at 700-800 °C. The extent of Ni-P interactions was determined by a post-test scanning electron microscopy (SEM) analysis. Severe damage to the anode support due to nickel phosphide phase formation and extensive crystal coalescence was revealed, resulting in electric percolation loss. The subsequent finite element stress analyses were conducted using the actual anode support microstructures to assist in degradation mechanism explanation. Volume expansion induced by the Ni phase alteration was found to produce high stress levels such that local failure of the Ni-YSZ anode became possible under the operating conditions.
Keywords:Ni-YSZ anode degradation  SOFC structural integrity  Coal gas impurity  Phosphorus-nickel interaction  Mechanical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号