首页 | 官方网站   微博 | 高级检索  
     


Gas-phase transport and entropy generation during transient combustion of single biomass particle in varying oxygen and nitrogen atmospheres
Authors:Linwei Wang  Nader Karimi  Manosh C Paul
Affiliation:Systems, Power & Energy Research Division, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
Abstract:Transient combustion of a single biomass particle in preheated oxygen and nitrogen atmospheres with varying concentration of oxygen is investigated numerically. The simulations are rigorously validated against the existing experimental data. The unsteady temperature and species concentration fields are calculated in the course of transient burning process and the subsequent diffusion of the combustion products into the surrounding gases. These numerical results are further post processed to reveal the temporal rates of unsteady entropy generation by chemical and transport mechanisms in the gaseous phase of the reactive system. The spatio-temporal evolutions of the temperature, major chemical species including CO, CO2, O2, H2 and H2O, and also the local entropy generations are presented. It is shown that the homogenous combustion of the products of devolatilisation process dominates the temperature and chemical species fields at low concentrations of oxygen. Yet, by oxygen enriching of the atmosphere the post-ignition heterogeneous reactions become increasingly more influential. Analysis of the total entropy generation shows that the chemical entropy is the most significant source of irreversibility and is generated chiefly by the ignition of volatiles. However, thermal entropy continues to be produced well after termination of the particle life time through diffusion of the hot gases. It also indicates that increasing the molar concentration of oxygen above 21% results in considerable increase in the chemical and thermal entropy generation. Nonetheless, further oxygen enrichment has only modest effects upon the thermodynamic irreversibilities of the system.
Keywords:Biomass  Entropy generation  Single particle combustion  Gaseous transport  Varying gas-phase atmosphere
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号