首页 | 官方网站   微博 | 高级检索  
     


Stoichiometric H2ICEs with water injection
Authors:Alberto Boretti
Affiliation:a School Of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, Victoria 3353, Australia
b Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 194 Toomey Hall, Rolla, MO 65409-0050, United States
Abstract:For the most part, gasoline engines operate close to stoichiometry because of the high power density and the easy after treatment through the very well established three-way catalytic converter technology. The lean burn gasoline engine suffers major disadvantages for the after treatment still requiring aggressive research and development to meet future emission standards more than for the lower power density compensated by the better fuel conversion efficiency running lean. Hydrogen engines are usually run ultra-lean to avoid abnormal combustion phenomena and possibly to avoid the emission of nitrogen oxides without the difficult non-stoichiometric after treatment. While the ultra-lean combustion of hydrogen may reduce the formation of NOx within the cylinder but makes the power density very low, the only lean combustion of hydrogen requires after treatment for NOx reduction. The suppression of abnormal combustion in hydrogen engines has been a challenge for the three regimes of abnormal combustion, knock (auto ignition of the end gas region), pre-ignition (uncontrolled ignition induced by a hot spot prior of the spark ignition) and backfire (premature ignition during the intake stroke, which could be seen as an early form of pre-ignition). Direct injection and jet ignition coupled to port water injection are used here to avoid the occurrence of all these abnormal combustion phenomena as well as to control the temperature of gases to turbine in a turbocharged stoichiometric hydrogen engine.
Keywords:Hydrogen internal combustion engines  Water injection  Direct fuel injection  Turbo charging  Knock modeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号