首页 | 官方网站   微博 | 高级检索  
     


Microbial fuel cell (MFC)-based biosensor for combined heavy metals monitoring and associated bioelectrochemical process
Affiliation:1. College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, PR China;2. School of Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang, PR China
Abstract:To explore the feasibility and related mechanism of MFC biosensor for wastewater detection under the action of combined heavy metals. Cyclic voltammetry (CV) and scanning electrochemical impedance spectroscopy (EIS) were used to explore the related bioelectrochemical process. The response of the reactor to single/combined heavy metals, low/high heavy metal concentrations, and the differences in ohmic resistance (Rs) and charge transfer resistance (Rct) were investigated using Ni as the core heavy metal and the combined action of Cd, Cu and Zn. The results indicated that there was a linear relationship between the concentration and output voltage of the MFC biosensor under the action of combined heavy metals (R2 = 0.8803–0.973). However, the internal resistance (Rint) of the MFC biosensor under the action of single heavy metal was far less than that of the combined heavy metal group, and the power density (19.849 W m?3) was 4 times that of the combined heavy metal group (3.109–4.589 W m?3). The Rs of the biosensors in the combined heavy metal group were 0.868Ω and 0.860, which were higher than 0.768Ω of the single heavy metal sensor. With the increase of the concentration of heavy metals in the influent, the increase of Rct was more obvious in the combined group, while the Rs in the single group significantly increased (P < 0.05). The results imply that it is possible for MFC biosensors to be used in the detection of actual water polluted by various heavy metals, but the biosensor performance is mainly limited by Rct, which needs to be further improved.
Keywords:Combined heavy metals  MFC biosensor  Charge transfer internal resistance  Bioelectrochemical process
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号