首页 | 官方网站   微博 | 高级检索  
     


Sustainability improvement in combined electricity and freshwater generation systems via biomass: A comparative emergy analysis and multi-objective optimization
Affiliation:1. Mechanical Engineering Department, Faculty of Engineering, Urmia University, Urmia, Iran;2. School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract:For energy systems, sustainability is a major concern that must be carefully considered when designed and established. Emergy analysis is an effective technique to scrutinize the sustainability of these systems. On the other hand, water shortage is seen to become a big problem in the close future; however, this problem can be effectively alleviated by combined electricity/water production plants, where waste heat is recovered to generate freshwater. This study applies emergy analysis to evaluate and improve the sustainability, renewability, environmental impacts, and economic aspect of such a plant, in which a multi-stage desalination (MSF) system is employed to recover the waste heat from a gas turbine (GT). The plant is fueled by biomass/natural gas (system I), natural gas (system II), and biomass (system III), and the above-mentioned features are compared for the different fuel types. To estimate chemical equilibrium state inside the gasifier, Lagrange's method of undetermined multipliers is applied. Also, considering exergy efficiency and emergy sustainability index as objective functions, biomass/natural gas-fueled system is optimized by adopting a multi-objective optimization approach based on the non-dominated sorting genetic algorithm II (NSGA II). To predict the optimized points' behavior, the Pareto optimal frontier of the system is utilized. The results reveal that using biomass as inlet fuel remarkably improves the sustainability index and reduces environmental impacts. The optimization results show that as sustainability index increases, exergy efficiency decreases. Also, the two optimized points of the system are found to have exergy efficiencies of 20.14% and 25.09% and sustainability indices of 24.67% and 13.60%.
Keywords:Biomass gasification  Emergy analysis  Environmental impact  Multi-objective optimization  Sustainability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号