首页 | 官方网站   微博 | 高级检索  
     


Energy and exergy analyses of a novel sulfur–iodine cycle assembled with HI–I2–H2O electrolysis for hydrogen production
Authors:Zhi Ying  Jingyang Yang  Xiaoyuan Zheng  Yabin Wang  Binlin Dou
Affiliation:School of Energy and Power Engineering, Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
Abstract:A novel sulfur–iodine (SI or IS) cycle integrated with HI–I2–H2O electrolysis for hydrogen production was developed and thermodynamically analyzed in this work. HI–I2–H2O electrolysis was used to replace the conventional concentration, distillation, and decomposition processes of HI, so as to simplify the flowsheet of SI cycle. And then the new cycle was divided into Bunsen reaction, H2SO4 decomposition and HI–I2–H2O electrolysis sections. Through incorporating the user-defined module of HI–I2–H2O electrolysis with Aspen Plus, the cycle was simulated and 0.448 mol/h (10 L/h) of H2 was produced. The overall energy and exergy efficiencies of the novel SI system were estimated to be 15.3–31.0% and 32.8%, respectively. Most exergy destruction occurred in the H2SO4 decomposer and condenser for H2SO4 decomposition and Bunsen reaction sections, which accounted for 93.0% and 63.4%, respectively. A high exergy efficiency of 92.4% for HI–I2–H2O electrolysis section with less exergy destruction was determined, mostly due to the transformation of the overall electricity in electrolytic cell to exergy. Appropriate internal heat exchange and waste heat recovery will favor improving the energy and exergy efficiencies.
Keywords:Hydrogen  Sulfur–iodine cycle  Energy  Exergy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号