首页 | 官方网站   微博 | 高级检索  
     


Thermal and hydraulic characteristics of a triangular duct using an Al2O 3 nanofluid in a turbulent flow regime
Authors:Yazan Taamneh  A E Kabeel  N Prakash  Ravishankar Sathyamurthy  Ali J Chamkha
Abstract:This paper presents the computational analysis of convective heat transfer characteristics, pressure drop, and entropy generation characteristics of Al2O3/water nanofluids in a noncircular duct (triangular) using a single phase approach under a turbulent flow regime. The thermal and pressure drop characteristics of different concentrations of Al2O3 nanoparticles (NPs) and the analysis were carried out in Fluent software using a k‐ε approach under constant wall heat flux around the boundary. The results show that there is an increase in pressure drop and thereby an increase in friction by 20% for the smooth condition. The total pressure drop between the entry and exit section of the duct is increased to approximately 84.2% and 85.6% for a higher Reynolds number (Re = 10 000) compared with that of base fluid. Similarly, the entropy generation of water is increased by 40% as compared with 0.05% and 0.1% Al2O3 NPs. There is also a decrease in entropy generation identified while there is an increase in the Reynolds number. The convective heat transfer of 0.05% and 0.1% nanofluid has a similar trend with increased Reynolds number. The maximum performance is observed at the Reynolds number (Re = 4000) and found to be 1.29 for 0.1% concentration, whereas, the fluid at 0.05% is observed to be at 1.23. At a higher Reynolds number (Re = 10 000) the performance index decreased to approximately 1.19 and 1.25 for 0.05% and 0.1%, respectively.
Keywords:entropy generation  friction factor  heat transfer characteristics  nanofluid  nanoparticle  thermal performance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号