首页 | 官方网站   微博 | 高级检索  
     

钛合金TC4真空自耗熔炼工艺参数对宏观偏析影响
引用本文:靖振权,孙彦辉,刘睿,陈炼,耿乃涛,郑友平,彭力,王莹.钛合金TC4真空自耗熔炼工艺参数对宏观偏析影响[J].稀有金属材料与工程,2023,52(3):815-822.
作者姓名:靖振权  孙彦辉  刘睿  陈炼  耿乃涛  郑友平  彭力  王莹
作者单位:北京科技大学 钢铁共性技术协同创新中心,北京 100083,北京科技大学 钢铁共性技术协同创新中心,北京 100083,北京科技大学 钢铁共性技术协同创新中心,北京 100083,攀钢集团攀枝花钢铁研究院有限公司,四川 攀枝花 617000,成都先进金属材料产业技术研究院股份有限公司,四川 成都 610300,成都先进金属材料产业技术研究院股份有限公司,四川 成都 610300,成都先进金属材料产业技术研究院股份有限公司,四川 成都 610300,成都先进金属材料产业技术研究院股份有限公司,四川 成都 610300
摘    要:采用Fluent软件模拟了钛合金TC4真空自耗熔炼过程中温度场、流场和溶质场相互作用,研究了与铸锭直接相关的3个工艺参数(熔速、铸锭上表面温度和冷却强度)对铸锭宏观偏析的影响规律。结果表明:不同熔炼条件下,在铸锭1000 mm高度处的铁元素径向偏析均呈钟形分布,即铸锭芯部为正偏析,表面区域为负偏析,且负偏析程度均大于正偏析。熔炼速度对铸锭温度场和宏观偏析的影响最为明显:当熔炼速度由0.15 mm/s增加到0.18 mm/s时,铸锭达到稳定熔炼阶段时的高度由1200 mm增加到1600 mm,熔池深度由494 mm增加到738 mm。当距铸锭中心距离小于130 mm时,偏析随熔炼速度增加而减小,在熔炼速度为0.15 mm/s时达到最大值,为3.36%;当距铸锭中心距离大于295 mm时,偏析随熔炼速度增大而增大,在熔炼速度为0.21 mm/s时达到最大值6.23%。铸锭上表面温度和冷却强度对宏观偏析和熔池深度的影响不明显。通过正交分析得到3个主要工艺参数对宏观偏析影响程度为:熔炼速度>冷却强度>铸锭上表面温度,并得到最优工艺参数为熔炼速度0.15 mm/s、铸锭上表面温度21...

关 键 词:钛合金  真空自耗熔炼  数值模拟  宏观偏析
收稿时间:2022/9/12 0:00:00
修稿时间:2022/10/14 0:00:00

Effect of Vacuum Arc Remelting Process Parameters on Macrosegregation in TC4 Titanium Alloy
Jing Zhenquan,Sun Yanhui,Liu Rui,Chen Lian,Geng Naitao,Zheng Youping,Peng Li and Wang Ying.Effect of Vacuum Arc Remelting Process Parameters on Macrosegregation in TC4 Titanium Alloy[J].Rare Metal Materials and Engineering,2023,52(3):815-822.
Authors:Jing Zhenquan  Sun Yanhui  Liu Rui  Chen Lian  Geng Naitao  Zheng Youping  Peng Li and Wang Ying
Affiliation:Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China,Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China,Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China,Pangang Group Panzhihua Research Institute of Iron and Steel Co., Ltd, Panzhihua 617000, China,Chengdu Advanced Metal Materials Industrial Technology Research Institute Co., Ltd, Chengdu 610300, China,Chengdu Advanced Metal Materials Industrial Technology Research Institute Co., Ltd, Chengdu 610300, China,Chengdu Advanced Metal Materials Industrial Technology Research Institute Co., Ltd, Chengdu 610300, China,Chengdu Advanced Metal Materials Industrial Technology Research Institute Co., Ltd, Chengdu 610300, China
Abstract:Fluent software was used to simulate the interaction among the temperature field, flow field, and solute field in the vacuum arc remelting process of TC4 titanium alloy. The effects of three process parameters (smelting rate, upper surface temperature of the ingot, and cooling intensity), which are directly related to the ingot, on the ingot macrosegregation were studied. Results show that under different smelting conditions, the radial macrosegregation of Fe element shows a bell-shaped distribution at the ingot height of 1000 mm, i.e., the core of ingot presents the positive macrosegregation whereas the surface area presents the negative macrosegregation, and the degree of negative macrosegregation is greater than that of the positive macrosegregation. The effect of smelting rates on the temperature field and macrosegregation of the ingot is the most obvious: with increasing the smelting rate from 0.15 mm/s to 0.18 mm/s, the ingot height to reach the stable melting stage is increased from 1200 mm to 1600 mm, and the depth of the molten pool is increased from 494 mm to 738 mm. In the area within the distance of 130 mm from the ingot center, the macrosegregation is decreased with increasing the smelting rate, and the maximum value is 3.36% when the smelting rate is 0.15 mm/s. In the area beyond the distance of 295 mm from the ingot center, the macrosegregation is increased with increasing the smelting rate, and the maximum value is 6.23% when the smelting rate is 0.21 mm/s. The effect of upper surface temperature and cooling intensity on macrosegregation and molten pool depth is not obvious. Through the orthogonal analysis, the influence degree of three main process parameters on macrosegregation is as follows: smelting rate>cooling intensity>ingot upper surface temperature. The optimal conditions are smelting rate of 0.15 mm/s, ingot upper surface temperature of 2179 K, and cooling intensity of 500 (bottom)/1000 (side) W·m-2·K-1.
Keywords:titanium alloy  vacuum arc remelting  numerical simulation  macrosegregation
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号