首页 | 官方网站   微博 | 高级检索  
     


Corrosion in solar heating systems. II. Corrosion behaviour of AA 6351 in water/glycol solutions
Authors:C Monticelli  G Brunoro  G Trabanelli  A Frignani
Abstract:A research was carried out in order to investigate the corrosion behaviour of the metals most commonly used as construction materials for solar absorber plates. With this view, an attempt was made to test the corrosion resistance of the aluminium alloy AA 6351 (nominal composition: 1% Si, 0.6% Mg, 0.3% Mn, the balance Al) towards common uninhibited heat transfer fluids, such as ethylene and propylene glycol/water mixtures. Long time gravimetric tests consisted in up to 60 day exposures of the aluminium specimens to pure, chloride-polluted, or degraded glycol/water solutions, at the temperature of 80°C. The degradation into acidic products, experienced by heat transfer liquids in service, was simulated by keeping the ethylene and propylene glycol/water solutions at their boiling temperature for 30 days, in contact with copper. In glycol/water solutions the presence of chlorides at low concentration (200 ppm) caused the aluminium corrosion rates to increase by more than one order of magnitude, while in degraded solutions, containing 143 or 86 ppm cupric ions, corrosion rates higher than two order of magnitude with respect to pure solutions were obtained. During the gravimetric tests, pitting corrosion was observed in some cases and its extent was rated by evaluating the deepest and the average metal penetration, the pit density and the average pit size. The influence of heat transfer on the alloy AA 6351 corrosion and on the couple copper/AA 6351 efficiency was evaluated by gravimetric and electrochemical tests. Heat transfer through aluminium was found to significantly increase the aluminium alloy pitting potential. On the contrary, it stimulated the aluminium galvanic corrosion, when applied on either aluminium or copper. Under galvanic coupling conditions, the aluminium corrosion rates calculated from the average galvanic currents were a very little contribution to the gravimetric corrosion rates. This demonstrates that in low conductive solutions the risk of matching such dissimilar metals as copper and aluminium does not reside in the galvanic contact itself, but mainly in the mere presence of the noblest metal in the same solution where aluminium is immersed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号