首页 | 官方网站   微博 | 高级检索  
     


Cracking behavior of oxide scale formed on Ti3SiC2-based ceramic
Authors:Guangming Liu  Meishuan Li  Yaming Zhang  Yanchun Zhou
Affiliation:

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110016, China

Abstract:The cyclic oxidation and acoustic emission (AE) tests were carried out for studying cracking behavior of oxide scales formed on Ti3SiC2-based ceramic at 1100 °C. A duplex oxide scale with an outer layer of pure TiO2 and an inner layer of a mixture of TiO2 and SiO2 was formed. The oxide scale did not spall from substrate during the cyclic oxidation at 1100 °C for 360 times. However, a great number of micro-cracks penetrating whole inner oxide layer were detected. AE test showed that the oxide scale did not crack during the isothermal oxidation at 1100 °C for 1 h, however, the scale cracked during the cooling stage. Comparing the growth rate and thickness between the oxide layers formed during the isothermal oxidation and cyclic oxidation, respectively, indicated that cracks in the inner oxide layer served as paths mainly for outward diffusion of titanium and for inward diffusion of oxygen, resulting in increased growth rate of the outer oxide layer. Because of entire and compact TiO2 consisted of outer oxide layer, and low thermal stress resulting from small mismatch of thermal expansion coefficients between the oxides and the substrate, Ti3SiC2 exhibited excellent cyclic oxidation resistance at 1100 °C for 360 cycles.
Keywords:Titanium silicon carbide  Oxide scale  Cracks  Thermal stress
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号