首页 | 官方网站   微博 | 高级检索  
     


Structure and compositional evolution in epitaxial Co/Pt core-shell nanoparticles on annealing
Authors:Kazuhisa Sato  Keigo Yanajima  Toyohiko J Konno
Affiliation:
  • a Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • b Department of Materials Science, Tohoku University, Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
  • Abstract:We report on the alloying of epitaxial Co/Pt core-shell nanoparticles using transmission electron microscopy (TEM) and electron diffraction. In as-deposited nanoparticles followed by in situ annealing at 823 K for 10.8 ks, high-angle annular dark-field (HAADF) imaging by scanning TEM (STEM) clearly revealed formation of Co-shell/Pt-core structures due to the large atomic number (Z) difference between Co (Z = 27) and Pt (Z = 78). We identified a formation of locally ordered areas of the L10 ordered phase at the core of the nanoparticles. After ex situ annealing at 873 K for 0.6 ks, some of the ordered areas showed complicated contrasts in the HAADF-STEM images. Based on image simulations, we found that these atypical contrasts arise from the stacking of two orthogonal variants of the L10 phase in the electron beam direction. Furthermore, the simulation showed that image contrast strongly reflects the structure of the variant located closer to the beam entrance rather than to the bottom side. Solid solution phase was formed by further annealing at 873 K for 3.6 ks, while high-density {111} stacking faults were observed inside the Co-Pt alloy nanoparticles. Magnetic coercivity remained at values as low as ~ 15.9 kA/m at 300 K, irrespective of the formation of local L10 ordered areas and/or a high-density stacking faults.
    Keywords:Cobalt-Platinum  Core-shell particles  Alloying  Atomic ordering  Stacking faults
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

    京公网安备 11010802026262号