首页 | 官方网站   微博 | 高级检索  
     


Influence of substrate properties on the growth of titanium films: part III
Authors:P Oberhauser  R Abermann  
Affiliation:

Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria.

Abstract:The growth of thin Ti-oxide films (12 nm) on alumina substrate films formed by reactive evaporation of Ti in an oxygen atmosphere was studied by in situ internal stress measurements under ultra high vacuum conditions and transmission electron microscopy. Oxygen pressure and substrate temperatures were the varied parameters of the reactive evaporation. These Ti-oxide-films with different oxygen content (O2/Ti-films) were then used as substrate films for the deposition of a clean titanium film. The growth stress of the titanium film on the as-deposited O2/Ti-substrate films is comparable with that previously found for H2O/Ti-substrates and indicates island growth and the formation of polycrystalline titanium films. Annealing (400°C, 20 min) of the as-deposited – amorphous – O2/Ti-films gives rise to the formation of crystalline TiO2. The amount of TiO2 formed during annealing is strongly dependent on the oxygen content of the O2/Ti-film. The oxygen content, in return, is dependent on oxygen partial pressure and substrate temperature during O2/Ti-film deposition. The corresponding changes in the substrate film properties (oxygen content, crystallinity, etc.) are reflected in significant changes in the growth stress of the titanium film. The stress vs. thickness curve of these titanium films appears to indicate a superposition of the growth stress of two different growth modes, i.e. growth of a polycrystalline film with island growth on the as-deposited, amorphous oxide substrate and epitaxial growth of a quasi single crystalline film on the crystalline TiO2-substrate.
Keywords:Epitaxy  Stress  Titanium oxide  Transmission electron microscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号