首页 | 官方网站   微博 | 高级检索  
     


Steel slag waste combined with melamine pyrophosphate as a flame retardant for rigid polyurethane foams
Affiliation:1. School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma’anshan, Anhui 243002, China;2. State Key Laboratory of Environment-friendly Energy Materials & School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China;3. Department of Polymer Science and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
Abstract:To explore the potential application of industrial waste, steel slag powder in combination with melamine pyrophosphate (MPP) was adopted to improve the flame retardancy of rigid polyurethane foam (RPUF). The incorporation of steel slag slightly reduced the thermal conductivity of the resulting flame-retardant RPUF samples. The addition of MPP and/or steel slag did not significantly alter the thermal stability in terms of T-10% and Tmax but did obviously increase the T-50% value, suggesting the improved thermal resistance of the residues. The coaddition of MPP and steel slag into RPUF resulted in higher LOI values and lower peak heat release rates than the samples incorporating either MPP or steel slag alone. The superior flame retardancy could be attributed to MPP promoting char formation, which then acted as a barrier at the beginning of RPUF thermal decomposition; simultaneously, the thermally stable inorganics in the steel slag powder strengthened the thermal resistance of this char layer.
Keywords:Rigid polyurethane foam  Steel slag waste  Melamine pyrophosphate  Flame retardancy  Thermal property  MPP"}  {"#name":"keyword"  "$":{"id":"k0035"}  "$$":[{"#name":"text"  "_":"Melamine Pyrophosphate  APP"}  {"#name":"keyword"  "$":{"id":"k0045"}  "$$":[{"#name":"text"  "_":"Ammonium Polyphosphate  DBTDL"}  {"#name":"keyword"  "$":{"id":"k0055"}  "$$":[{"#name":"text"  "_":"Dibutyltin Dilaurate  DTG"}  {"#name":"keyword"  "$":{"id":"k0065"}  "$$":[{"#name":"text"  "_":"Derivative TGA  EDS"}  {"#name":"keyword"  "$":{"id":"k0075"}  "$$":[{"#name":"text"  "_":"Energy Dispersive X-Ray Spectroscopy  EG"}  {"#name":"keyword"  "$":{"id":"k0085"}  "$$":[{"#name":"text"  "_":"Expandable Graphite  FIGRA"}  {"#name":"keyword"  "$":{"id":"k0095"}  "$$":[{"#name":"text"  "_":"Fire Growth Rate  HRR"}  {"#name":"keyword"  "$":{"id":"k0105"}  "$$":[{"#name":"text"  "_":"Heat Release Rate  LOI"}  {"#name":"keyword"  "$":{"id":"k0115"}  "$$":[{"#name":"text"  "_":"Limiting Oxygen Index  SS"}  {"#name":"keyword"  "$":{"id":"k0125"}  "$$":[{"#name":"text"  "_":"Steel Slag  TED"}  {"#name":"keyword"  "$":{"id":"k0135"}  "$$":[{"#name":"text"  "_":"Triethylene Diamine  PHRR"}  {"#name":"keyword"  "$":{"id":"k0145"}  "$$":[{"#name":"text"  "_":"Peak of Heat Release Rate  POSS"}  {"#name":"keyword"  "$":{"id":"k0155"}  "$$":[{"#name":"text"  "_":"Polyhedral Oligomeric Silsesquioxane  RPUF"}  {"#name":"keyword"  "$":{"id":"k0165"}  "$$":[{"#name":"text"  "_":"Rigid Polyurethane Foam  SEM"}  {"#name":"keyword"  "$":{"id":"k0175"}  "$$":[{"#name":"text"  "_":"Scanning Electron Microscope  TEOA"}  {"#name":"keyword"  "$":{"id":"k0185"}  "$$":[{"#name":"text"  "_":"Triethanolamine  THR"}  {"#name":"keyword"  "$":{"id":"k0195"}  "$$":[{"#name":"text"  "_":"Total Heat Release  maximum mass loss temperature  Time to PHRR  TTI"}  {"#name":"keyword"  "$":{"id":"k0225"}  "$$":[{"#name":"text"  "_":"Time to Ignition  T-10%"}  {"#name":"keyword"  "$":{"id":"k0235"}  "$$":[{"#name":"text"  "_":"10% mass loss temperature  T-50%"}  {"#name":"keyword"  "$":{"id":"k0245"}  "$$":[{"#name":"text"  "_":"50% mass loss temperature  XRD"}  {"#name":"keyword"  "$":{"id":"k0255"}  "$$":[{"#name":"text"  "_":"X-ray diffraction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号