首页 | 官方网站   微博 | 高级检索  
     


Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries
Affiliation:1. Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW2007, Australia;2. HEC Group Pty Ltd,Level 1, 21 Shierlaw Avenue, Canterbury, VIC3216, Australia;1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China;2. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology, Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China;3. Nanostructure Research Center (NRC), Wuhan University of Technology, Wuhan 430070, China;4. Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;5. Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
Abstract:Ni-rich layered oxides (NRLOs) and Li-rich layered oxides (LRLOs) have been considered as promising next-generation cathode materials for lithium ion batteries (LIBs) due to their high energy density, low cost, and environmental friendliness. However, these two layered oxides suffer from similar problems like capacity fading and different obstacles such as thermal runaway for NRLOs and voltage decay for LRLOs. Understanding the similarities and differences of their challenges and strategies at multiple scales plays a paramount role in the cathode development of advanced LIBs. Herein, we provide a comprehensive review of state-of-the-art progress made in NRLOs and LRLOs based on multi-scale insights into electrons/ions, crystals, particles, electrodes and cells. For NRLOs, issues like structure disorder, cracks, interfacial degradation and thermal runaway are elaborately discussed. Superexchange interaction and magnetic frustration are blamed for structure disorder while strains induced by universal structural collapse result in issues like cracks. For LRLOs, we present an overview of the origin of high capacity followed by local crystal structure, and the root of voltage hysteresis/decay, which are ascribed to reduced valence of transition metal ions, phase transformation, strains, and microstructure degradation. We then discuss failure mechanism in full cells with NRLO cathode and commercial challenges of LRLOs. Moreover, strategies to improve the performance of NRLOs and LRLOs from different scales such as ion-doping, microstructure designs, particle modifications, and electrode/electrolyte interface engineering are summarized. Dopants like Na, Mg and Zr, delicate gradient concentration design, coatings like spinel LiNi0.5Mn1.5O4 or Li3PO4 and novel electrolyte formulas are highly desired. Developing single crystals for NRLOs and new crystallographic structure or heterostructure for LRLOs are also emphasized. Finally, remaining challenges and perspectives are outlined for the development of NRLOs and LRLOs. This review offers fundamental understanding and future perspectives towards high-performance cathodes for next-generation LIBs.
Keywords:LIBs"}  {"#name":"keyword"  "$":{"id":"k0010"}  "$$":[{"#name":"text"  "_":"lithium ion batteries  NRLO(s)"}  {"#name":"keyword"  "$":{"id":"k0020"}  "$$":[{"#name":"text"  "_":"Ni-rich layered oxide(s)  LRLO(s)"}  {"#name":"keyword"  "$":{"id":"k0030"}  "$$":[{"#name":"text"  "_":"Li-rich layered oxide(s)  EVs"}  {"#name":"keyword"  "$":{"id":"k0040"}  "$$":[{"#name":"text"  "_":"electric vehicles  TM"}  {"#name":"keyword"  "$":{"id":"k0050"}  "$$":[{"#name":"text"  "_":"transition metal  NCMxyz"}  {"#name":"keyword"  "$":{"id":"k0060"}  "$$":[{"#name":"text"  "$$":[{"#name":"__text__"  "_":"LiNi"}  {"#name":"italic"  "$$":[{"#name":"inf"  "$":{"loc":"post"}  "_":"x  NCAxyz"}  {"#name":"keyword"  "$":{"id":"k0070"}  "$$":[{"#name":"text"  "$$":[{"#name":"__text__"  "_":"LiNi"}  {"#name":"italic"  "$$":[{"#name":"inf"  "$":{"loc":"post"}  "_":"x  ICE"}  {"#name":"keyword"  "$":{"id":"k0080"}  "$$":[{"#name":"text"  "_":"initial Coulombic efficiency  LNO"}  {"#name":"keyword"  "$":{"id":"k0090"}  "$$":[{"#name":"text"  "$$":[{"#name":"__text__"  "_":"LiNiO"}  {"#name":"inf"  "$":{"loc":"post"}  "_":"2  LCO"}  {"#name":"keyword"  "$":{"id":"k0100"}  "$$":[{"#name":"text"  "$$":[{"#name":"__text__"  "_":"LiCoO"}  {"#name":"inf"  "$":{"loc":"post"}  "_":"2  LFP"}  {"#name":"keyword"  "$":{"id":"k0110"}  "$$":[{"#name":"text"  "$$":[{"#name":"__text__"  "_":"LiFePO"}  {"#name":"inf"  "$":{"loc":"post"}  "_":"4  XRD"}  {"#name":"keyword"  "$":{"id":"k0120"}  "$$":[{"#name":"text"  "_":"X-ray diffraction  NPD"}  {"#name":"keyword"  "$":{"id":"k0130"}  "$$":[{"#name":"text"  "_":"Neutron powder diffraction  formation energy  (s)XAS"}  {"#name":"keyword"  "$":{"id":"k0150"}  "$$":[{"#name":"text"  "_":"(Soft) X-ray absorption spectroscopy  SOC"}  {"#name":"keyword"  "$":{"id":"k0160"}  "$$":[{"#name":"text"  "_":"state of charge  DFT"}  {"#name":"keyword"  "$":{"id":"k0170"}  "$$":[{"#name":"text"  "_":"density functional theory  SEM"}  {"#name":"keyword"  "$":{"id":"k0180"}  "$$":[{"#name":"text"  "_":"scanning electron microscopy  TEM"}  {"#name":"keyword"  "$":{"id":"k0190"}  "$$":[{"#name":"text"  "_":"transmission electron microscopy  DOD"}  {"#name":"keyword"  "$":{"id":"k0200"}  "$$":[{"#name":"text"  "_":"depth of discharge  STEM"}  {"#name":"keyword"  "$":{"id":"k0210"}  "$$":[{"#name":"text"  "_":"scanning transmission electron microscopy  HAADF"}  {"#name":"keyword"  "$":{"id":"k0220"}  "$$":[{"#name":"text"  "_":"high-angle annular dark field  EC"}  {"#name":"keyword"  "$":{"id":"k0230"}  "$$":[{"#name":"text"  "_":"ethylene carbonate  DMC"}  {"#name":"keyword"  "$":{"id":"k0240"}  "$$":[{"#name":"text"  "_":"dimethyl carbonate  EELS"}  {"#name":"keyword"  "$":{"id":"k0250"}  "$$":[{"#name":"text"  "_":"electron energy loss spectroscopy  ABF"}  {"#name":"keyword"  "$":{"id":"k0260"}  "$$":[{"#name":"text"  "_":"annular bright field  CEI"}  {"#name":"keyword"  "$":{"id":"k0270"}  "$$":[{"#name":"text"  "_":"cathode-electrolyte interphases  TOF-SIMS"}  {"#name":"keyword"  "$":{"id":"k0280"}  "$$":[{"#name":"text"  "_":"time-of-flight secondary-ion mass spectrometry  TXM"}  {"#name":"keyword"  "$":{"id":"k0290"}  "$$":[{"#name":"text"  "_":"transmission X-ray microscopy  DEMS"}  {"#name":"keyword"  "$":{"id":"k0300"}  "$$":[{"#name":"text"  "_":"differential electrochemical mass spectrometry  DSC"}  {"#name":"keyword"  "$":{"id":"k0310"}  "$$":[{"#name":"text"  "_":"differential scanning calorimetry  ARC"}  {"#name":"keyword"  "$":{"id":"k0320"}  "$$":[{"#name":"text"  "_":"Accelerating Rate Calorimetry  AR"}  {"#name":"keyword"  "$":{"id":"k0330"}  "$$":[{"#name":"text"  "_":"anionic redox  HAXPES"}  {"#name":"keyword"  "$":{"id":"k0340"}  "$$":[{"#name":"text"  "_":"hard X-ray photoelectron spectroscopy  RIXS"}  {"#name":"keyword"  "$":{"id":"k0350"}  "$$":[{"#name":"text"  "_":"resonant inelastic X-ray scattering  SERS"}  {"#name":"keyword"  "$":{"id":"k0360"}  "$$":[{"#name":"text"  "_":"surface enhanced Raman spectra  PC"}  {"#name":"keyword"  "$":{"id":"k0370"}  "$$":[{"#name":"text"  "_":"propylene carbonate  XANES"}  {"#name":"keyword"  "$":{"id":"k0380"}  "$$":[{"#name":"text"  "_":"X-ray absorption near edge structure  EXAFS"}  {"#name":"keyword"  "$":{"id":"k0390"}  "$$":[{"#name":"text"  "_":"extended X-ray absorption fine structure  NMR"}  {"#name":"keyword"  "$":{"id":"k0400"}  "$$":[{"#name":"text"  "_":"nuclear magnetic resonance  SAED"}  {"#name":"keyword"  "$":{"id":"k0410"}  "$$":[{"#name":"text"  "_":"selected area electron diffraction  HE-SXRD"}  {"#name":"keyword"  "$":{"id":"k0420"}  "$$":[{"#name":"text"  "_":"High-energy synchrotron X-ray diffraction  BMS"}  {"#name":"keyword"  "$":{"id":"k0430"}  "$$":[{"#name":"text"  "_":"battery management systems  SEI"}  {"#name":"keyword"  "$":{"id":"k0440"}  "$$":[{"#name":"text"  "_":"solid electrolyte interphases  ALD"}  {"#name":"keyword"  "$":{"id":"k0450"}  "$$":[{"#name":"text"  "_":"atomic layer deposition  EPMA"}  {"#name":"keyword"  "$":{"id":"k0460"}  "$$":[{"#name":"text"  "_":"electron probe micro analysis  LiFSI"}  {"#name":"keyword"  "$":{"id":"k0470"}  "$$":[{"#name":"text"  "_":"lithium bis(fluorosulfonyl)imide  LiTFSI"}  {"#name":"keyword"  "$":{"id":"k0480"}  "$$":[{"#name":"text"  "_":"lithium bis((trifluoromethyl)sulfonyl)azanide  FEC"}  {"#name":"keyword"  "$":{"id":"k0490"}  "$$":[{"#name":"text"  "_":"fluoroethylene carbonate  FEMC"}  {"#name":"keyword"  "$":{"id":"k0500"}  "$$":[{"#name":"text"  "_":"methyl (2  2  2-trifluoroethyl) carbonate  HFE"}  {"#name":"keyword"  "$":{"id":"k0510"}  "$$":[{"#name":"text"  "_":"1  1  2  2-tetrafluoroethyl-2?  2?  2?-trifluoroethyl  EMC"}  {"#name":"keyword"  "$":{"id":"k0520"}  "$$":[{"#name":"text"  "_":"ethyl methyl carbonate  LiDFOB"}  {"#name":"keyword"  "$":{"id":"k0530"}  "$$":[{"#name":"text"  "_":"lithium difuoro(oxalate) borate  SCR"}  {"#name":"keyword"  "$":{"id":"k0540"}  "$$":[{"#name":"text"  "_":"self-combustion reactions  LiBOB"}  {"#name":"keyword"  "$":{"id":"k0550"}  "$$":[{"#name":"text"  "_":"lithium bis(oxalate) borate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号