首页 | 官方网站   微博 | 高级检索  
     


Experimental-numerical study and optimization of sound insulation of a finite composite cylinder
Authors:Chongxin Yuan  NBert Roozen  Otto Bergsma  Adriaan Beukers
Affiliation:Delft University of Technology, Faculty of Aerospace Engineering, Design and Production of Composite Structures, Delft, The Netherlands
Abstract:The aircraft fuselage is idealized as a composite cylinder, its vibroacoustic properties are studied both experimentally and numerically, and a minimization of the inner pressure of a composite cylinder is conducted with the genetic algorithm (GA). In the optimization, the Acoustic Transfer Vector (ATV), which comes from the boundary element method, builds the relationship between the structural surface velocity and the sound pressure at the specific filed points. Results show that the noise reduction obtained by the experimental and numerical methods have a good agreement; the optimization method which combines GA and ATV show high efficiency and robustness; increase of the bending stiffness of the cylinder can improve the noise reduction at low frequencies; both the reduction of weight and the increase of noise insulation can be achieved by the optimization of the layup at different regions of the cylinder individually.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号