首页 | 官方网站   微博 | 高级检索  
     

Oxidation of Hastelloy-XR Alloy for Corrosion-Resistant Glass-Coating
作者单位:Rong TU and Takashi GOTOInstitute for Materials Research,Tohoku University,Sendai 980-8577,Japan
摘    要:The oxidation behavior of Hastelloy-XR alloy was investigated to obtain the optimum surface condition for corrosion-resistant glass-coatings. The surface morphology of oxide scales changed significantly with variation of temperatureand oxygen partial pressure (po2 ). The oxidation kinetics was mainly parabolic independent of oxidation conditions.The oxide scales were consisted of inner Cr2O3 and outer spinel layers. The phase component of spinel layers wereMn1.5Cr1.5O4 and (Mn,Ni)(Cr,Fe)2O4 for the oxygen partial pressures po2<10 kPa and po2>10 kPa, respectively.The optimum oxidation condition to obtain an oxide scale for well-adhered glass-coating to the substrate was 1248 Kand po2 =0.01 kPa for the oxidation time of 43 ks.

关 键 词:哈斯特镍合金  氧化  玻璃镀层  耐蚀性  表面处理  粘合性

Oxidation of Hastelloy-XR Alloy for Corrosion-Resistant Glass-Coating
Authors:Rong TU  Takashi GOTO
Affiliation:Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Abstract:The oxidation behavior of Hastelloy-XR alloy was investigated to obtain the optimum surface condition for corrosion-resistant glass-coatings. The surface morphology of oxide scales changed significantly with variation of temperatureand oxygen partial pressure (po2 ). The oxidation kinetics was mainly parabolic independent of oxidation conditions.The oxide scales were consisted of inner Cr2O3 and outer spinel layers. The phase component of spinel layers wereMn1.5Cr1.5O4 and (Mn,Ni)(Cr,Fe)2O4 for the oxygen partial pressures po2<10 kPa and po2>10 kPa, respectively.The optimum oxidation condition to obtain an oxide scale for well-adhered glass-coating to the substrate was 1248 Kand po2 =0.01 kPa for the oxidation time of 43 ks.
Keywords:Oxidation  Hastelloy-XR alloy  Glass coating
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《材料科学技术学报》浏览原始摘要信息
点击此处可从《材料科学技术学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号