首页 | 官方网站   微博 | 高级检索  
     


Hierarchical subspace evolution method for super large parallel computing: A linear solver and an eigensolver as examples
Authors:Hui Xu  Bin Liu
Affiliation:AML, Department of Engineering Mechanics, Tsinghua University, Beijing, China
Abstract:Solving linear equations and finding eigenvalues are essential tasks in many simulations for engineering applications, but these tasks often cause performance bottlenecks. In this work, the hierarchical subspace evolution method (HiSEM), a hierarchical iteration framework for solving scientific computing problems with solution locality, is proposed. In HiSEM, the original problem is converted to a corresponding minimization function. The problem is decomposed into a series of subsystems. Subspaces and their weights are established for the subsystems and evolve in each iteration. The subspaces are calculated based on local equations and knowledge of physical problems. A small-scale minimization problem determines the weights of the subspaces. The solution system can be hierarchically established based on the subspaces. As the iterations continue, the degrees of freedom gradually converge to an accurate solution. Two parallel algorithms are derived from HiSEM. One algorithm is designed for symmetric positive definite linear equations, and the other is designed for generalized eigenvalue problems. The linear solver and eigensolver performance is evaluated using a series of benchmarks and a tower model with a complex topology. Algorithms derived from HiSEM can solve a super large-scale problem with high performance and good scalability.
Keywords:eigensolver  hierarchical subspace evolution method  linear solver  parallel computing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号