首页 | 官方网站   微博 | 高级检索  
     


Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting
Authors:Sun Ke  Madsen Kristian  Andersen Pål  Bao Weining  Sun Zhelin  Wang Deli
Affiliation:Department of Electrical and Computer Engineering, University of California, San Diego, 9500?Gilman?Drive,?La?Jolla, CA?92093, USA.
Abstract:We report a systematic study of Si|ZnO and Si|ZnO| metal photocathodes for effective photoelectrochemical cells and hydrogen generation. Both ZnO nanocrystalline thin films and vertical nanowire arrays were studied. Si|ZnO electrodes showed increased cathodic photocurrents due to improved charge separation by the formation of a p/n junction, and Si|ZnO:Al (n(+)-ZnO) and Si|ZnO(N(2)) (thin films prepared in N(2)/Ar gas) lead to a further increase in cathodic photocurrents. Si|ZnONW (nanowire array) photocathodes dramatically increased the photocurrents and thus photoelectrochemical conversion efficiency due to the enhanced light absorption and enlarged surface area. The ZnO film thickness and ZnO nanowire length were important to the enhancements. A thin metal coating on ZnO showed increased photocurrent due to a catalyzed hydrogen evolution reaction and Ni metal showed comparable catalytic activities to those of Pt and Pd. Moreover, photoelectrochemical instability of Si|ZnO electrodes was minimized by metal co-catalysts. Our results indicate that the metal and ZnO on p-type Si serve as co-catalysts for photoelectrochemical water splitting, which can provide a possible low-cost and scalable method to fabricate high efficiency photocathodes for practical applications in clean solar energy harvesting.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号