首页 | 官方网站   微博 | 高级检索  
     


Pattern computation for compression garment by a physical/geometric approach
Authors:Charlie CL Wang  Kai Tang
Affiliation:a Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong
b Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Hong Kong
Abstract:This paper addresses the problem of computing planar patterns for compression garments. In the garment industry, the compression garment has been increasingly widely used to retain the shape of a human body, where certain strain (or normal pressure) is designed at some places on the compression garment. Variant values and distribution of strain can only be generated by sewing different two-dimensional (2D) patterns and warping them onto the body. We present a physical/geometric approach for computing 2D meshes that, when folded onto the three-dimensional (3D) body, can generate a user-defined strain distribution through proper distortion. This is opposite to the widely studied mesh parameterization problem, whose objective is to minimize the distortion between the 2D and 3D meshes in angle, area or length.
Keywords:Physical/geometric modeling  Compression garment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号