首页 | 官方网站   微博 | 高级检索  
     


STL rapid prototyping bio-CAD model for CT medical image segmentation
Authors:Chung-Shing Wang [Author Vitae]  Wei-Hua A Wang [Author Vitae] [Author Vitae]
Affiliation:a Department of Industrial Design, Tung Hai University, P.O. Box 965, Taichung 407, Taiwan
b Department of Industrial Engineering and Enterprise Management, Tung Hai University, Taichung 407, Taiwan
Abstract:This paper presents a simple process to construct 3D rapid prototyping (RP) physical models for computer tomography (CT) medical images segmentation. The use of stereolithography (STL) triangular meshes as a basis for RP construction facilitates the simplification of the process of converting CT images to an RP model. This is achieved by constructing the STL triangular meshes directly from data points without having to draw the curve model first. The grey prediction algorithm is used to sort contour point data in each layer of the medical image. The contour difference detection operation is used to sequence the points for each layer. The 3D STL meshes are then constructed by this proposed layer-by-layer sequence meshes algorithm to build the STL file. Once this STL file is saved, a 3D physical model of the medical image can be fabricated by RP manufacturing, and its virtual reality model can also be presented for visualization. CT images of a human skull and femur bone were used as the case studies for the construction of the 3D solid model with medical images. The STL models generated using this new methodology were compared to commercial computer-aided design (CAD) models. The results of this comparative analysis show that this new methodology is statistically comparable to that of the CAD software. The results of this research are therefore clinically reliable in reconstructing 3D bio-CAD models for CT medical images.
Keywords:Medical image  Rapid prototyping  Triangular mesh  Grey prediction  Bio-CAD
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号