首页 | 官方网站   微博 | 高级检索  
     


An intelligent moving object optimization algorithm for design problems with mixed variables, mixed constraints and multiple objectives
Authors:M K Rahman
Affiliation:(1) School of Oil & Gas Engineering, M052, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
Abstract:This paper presents an optimization algorithm for engineering design problems having a mix of continuous, discrete and integer variables; a mix of linear, non-linear, differentiable, non-differential, equality, inequality and even discontinuous design constraints; and conflicting multiple design objectives. The intelligent movement of objects (vertices and compounds) is simulated in the algorithm based on a Nelder–Mead simplex with added features to handle variable types, bound and design constraints, local optima, search initiation from an infeasible region and numerical instability, which are the common requirements for large-scale, complex optimization problems in various engineering and business disciplines. The algorithm is called an INTElligent Moving Object algorithm and tested for a wide range of benchmark problems. Validation results for several examples, which are manageable within the scope of this paper, are presented herein. Satisfactory results have been obtained for all the test problems, hence, highlighting the benefits of the proposed method.
Keywords:Non-linear constrained optimization  Direct-search algorithm  Nelder–  Mead algorithm  Mixed-variable optimization  Multi-objective optimization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号