首页 | 官方网站   微博 | 高级检索  
     


Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems
Abstract:The job shop scheduling problem (JSSP) has been a hot issue in manufacturing. For the past few decades, scholars have been attracted to research JSSP and proposed many novel meta-heuristic algorithms to solve it. Whale optimization algorithm (WOA) is such a novel meta-heuristic algorithm and has been proven to be efficient in solving real-world optimization problems in the literature. This paper proposes a hybrid WOA enhanced with Lévy flight and differential evolution (WOA-LFDE) to solve JSSP. By changing the expression of Lévy flight and DE search strategy, Lévy flight enhances the abilities of global search and convergence of WOA in iteration, while DE algorithm improves the exploitation and local search capabilities of WOA and keeps the diversity of solutions to escape local optima. It is then applied to solve 88 JSSP benchmark instances and compared with other state-of-art algorithms. The experimental results and statistical analysis show that the proposed algorithm has superior performance over contesting algorithms.
Keywords:Job shop scheduling problem  Whale optimization algorithm  Lévy flight  Differential evolution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号