首页 | 官方网站   微博 | 高级检索  
     


Assembly Line Balancing Using Differential Evolution Models
Authors:Andreas C Nearchou  Sotiris L Omirou
Affiliation:1. Department of Business Administration, University of Patras, Patras, Greece;2. Department of Mechanical Engineering, Frederick University, Nicosia, Cyprus
Abstract:There is a growing research interest on the application of evolutionary computation-based techniques in manufacturing optimization due to the fact that this field is associated with a plethora of complex combinatorial optimization problems. Differential evolution (DE), one of the latest developed evolutionary algorithms, has rarely been applied on manufacturing optimization problems (MOPs). A possible reason for the absence of DE from this research field is that DE was introduced as global optimizer over continuous spaces, while most of MOPs are of combinatorial nature with discrete decision variables. DE maintains and evolves floating-point vectors and therefore its application to MOPs that have solutions represented by permutations is not straightforward. This paper investigates the use of DE for the solution of the simple assembly line balancing problem (SALBP), a well-known NP-hard MOP. Two basic formulation types for SALBP are examined, namely type-1 and type-2: the former attempts to minimize the number of workstations required to manufacture a product in an assembly line for a given fixed cycle time; while the latter attempts to minimize the cycle time of the line for a given number of stations. Extensive experiments carried out over public benchmarks test instances estimate the performance of DE approach.
Keywords:Assembly line balancing  differential evolution  evolutionary algorithms  manufacturing optimization  metaheuristics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号