首页 | 官方网站   微博 | 高级检索  
     


Biological cell injection visual and haptic interface
Abstract:This paper presents a new three-dimensional (3-D) biomicromanipulation system for biological objects such as embryos, cells or oocytes. As the cell is very small, kept in liquid and observed through a microscope, 2-D visual feedback makes accurate manipulation in the 3-D world difficult. To improve the manipulation work, we proposed an intelligent human–machine interface. The 3-D visual information is provided to the operator through a 3-D reconstruction method using vision-based tracking deformations of the cell embryo. In order to perform stable microinjection tasks, the operator needs force feedback and haptic assistance during penetration of the cell envelop — the chorion. Thus, realistic haptic rendering techniques have been implemented to validate stable insertion of a micropipette in a living cell. The proposed human–machine user's interface allows real-time realistic visual and haptic control strategies for constrained motion in image coordinates, virtual haptic rendering to constrain the path of insertion and removal in the 3-D scene or to avoid cell destruction by adequately controlling position, velocity and force parameters. Experiments showed that the virtualized reality interface acts as a tool for total guidance and assistance during microinjection tasks.
Keywords:BIOMICROMANIPULATION  HUMAN-MACHINE INTERFACE  HAPTIC RENDERING  VISION-BASED TRACKING  THREE-DIMENSIONAL RECONSTRUCTION
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号