首页 | 官方网站   微博 | 高级检索  
     


Mapping vegetation community types in a highly disturbed landscape: integrating hierarchical object-based image analysis with lidar-derived canopy height data
Authors:Rachel A Snavely  Douglas A Stow  John F O’Leary  Julie Lambert
Affiliation:1. Department of Geography, San Diego State University, San Diego, CA, USA;2. Soil Ecology Research Group, San Diego State University, San Diego, CA, USA
Abstract:Focusing on the semi-arid and highly disturbed landscape of San Clemente Island (SCI), California, we test the effectiveness of incorporating a hierarchical object-based image analysis (OBIA) approach with high-spatial resolution imagery and canopy height surfaces derived from light detection and ranging (lidar) data for mapping vegetation communities. The hierarchical approach entailed segmentation and classification of fine-scale patches of vegetation growth forms and bare ground, with shrub species identified, and a coarser-scale segmentation and classification to generate vegetation community maps. Such maps were generated for two areas of interest on SCI, with and without vegetation canopy height data as input, primarily to determine the effectiveness of such structural data on mapping accuracy. Overall accuracy is highest for the vegetation community map derived by integrating airborne visible and near-infrared imagery having very high spatial resolution with the lidar-derived canopy height data. The results demonstrate the utility of the hierarchical OBIA approach for mapping vegetation with very high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accurately mapping vegetation communities within highly disturbed landscapes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号