首页 | 官方网站   微博 | 高级检索  
     


Feature-based ontological framework for semantic interoperability in product development
Affiliation:1. CAD Lab, Mechanical Engineering Department, SAMM, Manipal University Jaipur, Jaipur 303007, India;2. Centre for Product Design and Manufacturing, Indian Institute of Science, Bangalore 560012, India;1. Department of Civil & Environmental Engineering, National University of Singapore, Block E1A, #07-03, No.1 Engineering Drive 2, Singapore 117576, Singapore;2. Future Cities Laboratory, Singapore-ETH Centre, 1 CREATE Way, CREATE Tower, #06-01, Singapore 138602, Singapore;3. Applied Computing and Mechanics Laboratory (IMAC), School of Architecture, Civil and Environmental Engineering (ENAC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland;1. Applied Mechanics and Construction, University of Vigo, Spain;2. Chair of Computational Modelling and Simulation, Technical University of Munich, Germany
Abstract:An essential requirement in integrating tasks in product development is to have a seamless exchange of product information through the entire product lifecycle. A key challenge in the integration is the exchange of shape semantics in terms of understandable labels and representations. A unified taxonomy is proposed to represent, classify, and extract shape features. This taxonomy is built using the Domain-Independent Form Feature (DIFF) model as the representation of features. All the shape features in a product model are classified under three main classes, namely, volumetric features, deformation features and free-form surface features. Shape feature ontology is developed using the unified taxonomy, which brings the shape features under a single reasoning framework. One-to-many reasoning framework is presented for mapping semantically equivalent information (label and representation) of the feature to be exchanged to target applications, and the reconstruction of the shape model automatically in that target application. An algorithm has been developed to extract the semantics of shape features and construct the model in the target application. The algorithm developed has been tested for shape models taken from literature and test cases are selected based on variations of topology and geometry. Results of exchanging product information are presented and discussed. Finally, the limitations of the proposed method for exchanging product information are explained.
Keywords:Product information exchange  Semantic interoperability  Shape feature taxonomy  Feature semantics  Product informatics  Computer-aided design  Product lifecycle management  Product development
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号