一种基于粒子群参数优化的改进蚁群算法 |
| |
作者姓名: | 李擎 张超 陈鹏 尹怡欣 |
| |
作者单位: | 1. 北京科技大学 自动化学院,北京 100083 2. 中国科学院 国家天文台,北京 100012 |
| |
基金项目: | 江苏省六大人才高峰项目,工业控制技术国家重点实验室开放课题;教育部留学回国人员科研启动基金 |
| |
摘 要: | 蚁群算法是一种应用广泛、性能优良的智能优化算法,其求解效果与参数选取息息相关.鉴于此,针对现有基于粒子群参数优化的改进蚁群算法耗时较大的问题,提出一种新的解决方案.该方案给出一种全局异步与精英策略相结合的信息素更新方式,且通过大量统计实验可以在较大程度上减少蚁群算法被粒子群算法调用一次所需的迭代代数.仿真实验表明,所提出算法在求解较大规模旅行商问题时具有明显的速度优势.
|
关 键 词: | 粒子群算法 改进蚁群算法 迭代代数 旅行商问题 |
收稿时间: | 2012-02-13 |
修稿时间: | 2012-05-17 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《控制与决策》浏览原始摘要信息 |
|
点击此处可从《控制与决策》下载全文 |
|