首页 | 官方网站   微博 | 高级检索  
     

基于中心解的改进人工蜂群算法
作者姓名:宋月振  裴腾达  裴炳南
作者单位:大连大学 信息工程学院, 辽宁 大连 116622
基金项目:国家自然科学基金资助项目(61271379)~~
摘    要:为了解决人工蜂群(ABC)算法在用于函数优化时所具有的局部探索能力不强、收敛精度不高的问题,提出一种基于中心解的人工蜂群算法。该算法结合中心解和当前最优候选解的优点,并将中心解引入到跟随蜂的局部变异策略中。跟随蜂采用轮盘赌的形式,选择某些适应度值较好的蜜源,在雇佣蜂中心解的基础上深度局部寻优,并在每次迭代中逐维更新蜜源每一维度的值。为了验证该算法的有效性,选择六个基准测试函数对三种算法进行仿真对比实验。与标准ABC算法和Best-so-far ABC算法相比,改进的ABC算法的求解精度有较大幅度提高,特别是对于Rastrigin函数,两种不同维数下均达到了理论最优值。实验结果表明:所提算法在收敛速度和寻优精度上都有明显改善。

关 键 词:人工蜂群算法  中心解  当前最优解  局部搜索  
收稿时间:2015-08-24
修稿时间:2015-10-31
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号