首页 | 官方网站   微博 | 高级检索  
     

基于最小不满足核的随机森林局部解释性分析
引用本文:马舒岑,史建琦,黄滟鸿,秦胜潮,侯哲.基于最小不满足核的随机森林局部解释性分析[J].软件学报,2022,33(7):2447-2463.
作者姓名:马舒岑  史建琦  黄滟鸿  秦胜潮  侯哲
作者单位:国家可信嵌入式软件工程技术研究中心(华东师范大学), 上海 200062;华东师范大学 软件工程学院, 上海 200062;深圳大学 计算机与软件学院, 广东 深圳 518000;格里菲斯大学 信息与通信技术, 澳大利亚
基金项目:国家重点研发计划项目(2019YFB2102602)
摘    要:随着机器学习在安全关键领域的应用愈加广泛,对于机器学习可解释性的要求也愈加提高.可解释性旨在帮助人们理解模型内部的运作原理以及决策依据,增加模型的可信度.然而,对于随机森林等机器学习模型的可解释性相关研究尚处于起步阶段.鉴于形式化方法严谨规范的特性以及近年来在机器学习领域的广泛应用,提出一种基于形式化和逻辑推理方法的机器学习可解释性方法,用于解释随机森林的预测结果.即将随机森林模型的决策过程编码为一阶逻辑公式,并以最小不满足核为核心,提供了关于特征重要性的局部解释以及反事实样本生成方法.多个公开数据集的实验结果显示,所提出的特征重要性度量方法具有较高的质量,所提出的反事实样本生成算法优于现有的先进算法;此外,从用户友好的角度出发,可根据基于反事实样本分析结果生成用户报告,在实际应用中,能够为用户改善自身情况提供建议.

关 键 词:机器学习可解释性  特征重要性  反事实样本  形式化方法  逻辑推理
收稿时间:2021/9/5 0:00:00
修稿时间:2021/10/14 0:00:00

Minimal-unsatisfiable-core-driven Local Explainability Analysis for Random Forest
MA Shu-Cen,SHI Jian-Qi,HUANG Yan-Hong,QIN Sheng-Chao,HOU Zhe.Minimal-unsatisfiable-core-driven Local Explainability Analysis for Random Forest[J].Journal of Software,2022,33(7):2447-2463.
Authors:MA Shu-Cen  SHI Jian-Qi  HUANG Yan-Hong  QIN Sheng-Chao  HOU Zhe
Affiliation:National Trusted Embedded Software Engineering Technology Research Center (East China Normal University), Shanghai 200062, China;Software Engineering Institute, East China Normal University, Shanghai 200062, China;College of Computer Science & Software Engineering, Shenzhen Univeristy, ShenZhen, 518000, China; Information and Communication Technology, Griffth University, Australia
Abstract:With the broader adoption of Machine Learning (ML) in security-critical fields, the requirements for the explainability of ML are also increasing. The explainability aims at helping people understand models'' internal working principles and decision basis, which adds their realibility. However, the research on understanding ML models, such as Random Forest (RF), is still in the infant stage. Considering the strict and standardized characteristics of formal methods and their wide application in the field of ML in recent years, in this work, we leverage formal methods and logical reasoning to develop a method for explaining the prediction of RF. Specifically, we encode the decision-making process of RF into first-order logic formula. And our approach is centered around Minimal Unsatisfiable Cores (MUC) and provides local interpretation of feature importance and counterfactual sample generation method. Experimental results on several public datasets illustrate the high quality of our feature importance measurement, and our counterfactual sample generation method outperforms the state-of-the-art method. Moreover, from the perspective of user friendliness, the user report can be generated according to the analysis results of counterfactual samples, which can provide suggestions for users to improve their own situation in real-life applications.
Keywords:Explainable Artificial Intelligence (XAI)  Feature Importance  Counterfactual Sample Generation  Formal Methods  Logical Reasoning
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号