首页 | 官方网站   微博 | 高级检索  
     


Comparison of ERS-2 SAR and Landsat TM imagery for monitoring agricultural crop and soil conditions
Affiliation:1. Romanian National Institute for Research and Development in Forestry, INCDS “Marin Drăcea”, Department of Forest Monitoring, Bulevardul Eroilor 128, 077190 Voluntari, Romania;2. Universidad de Alcalá, Department of Geology, Geography and Environment, Calle Colegios 2, 28801 Alcalá de Henares, Spain,;5. Gamma Remote Sensing, Worbstrasse 225, 3073 Gümligen, Switzerland;6. Centre d''Etudes Spatiales de la Biosphère, 31400 Toulouse, France;7. “Transilvania” University, Faculty of Silviculture and Forest Engineering, Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, 1, Ludwig van Beethoven Str. 1, 500123 Braşov, Romania
Abstract:Studies over the past 25 years have shown that measurements of surface reflectance and temperature (termed optical remote sensing) are useful for monitoring crop and soil conditions. Far less attention has been given to the use of radar imagery, even though synthetic aperture radar (SAR) systems have the advantages of cloud penetration, all-weather coverage, high spatial resolution, day/night acquisitions, and signal independence of the solar illumination angle. In this study, we obtained coincident optical and SAR images of an agricultural area to investigate the use of SAR imagery for farm management. The optical and SAR data were normalized to indices ranging from 0 to 1 based on the meteorological conditions and sun/sensor geometry for each date to allow temporal analysis. Using optical images to interpret the response of SAR backscatter (σo) to soil and plant conditions, we found that SAR σo was sensitive to variations in field tillage, surface soil moisture, vegetation density, and plant litter. In an investigation of the relation between SAR σo and soil surface roughness, the optical data were used for two purposes: (1) to filter the SAR images to eliminate fields with substantial vegetation cover and/or high surface soil moisture conditions, and (2) to evaluate the results of the investigation. For dry, bare soil fields, there was a significant correlation (r2=.67) between normalized SAR σo and near-infrared (NIR) reflectance, due to the sensitivity of both measurements to surface roughness. Recognizing the limitations of optical remote sensing data due to cloud interference and atmospheric attenuation, the findings of this study encourage further studies of SAR imagery for crop and soil assessment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号