首页 | 官方网站   微博 | 高级检索  
     


The control of a two-level Markov decision process by time aggregation
Authors:Yat-wah Wan [Author Vitae] [Author Vitae]
Affiliation:a Institute of Global Operations Strategy and Logistics Management, National Dong Hwa University, Hualien, Taiwan
b Department of Electrical and Electronic Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
Abstract:The solution of Markov Decision Processes (MDPs) often relies on special properties of the processes. For two-level MDPs, the difference in the rates of state changes of the upper and lower levels has led to limiting or approximate solutions of such problems. In this paper, we solve a two-level MDP without making any assumption on the rates of state changes of the two levels. We first show that such a two-level MDP is a non-standard one where the optimal actions of different states can be related to each other. Then we give assumptions (conditions) under which such a specially constrained MDP can be solved by policy iteration. We further show that the computational effort can be reduced by decomposing the MDP. A two-level MDP with M upper-level states can be decomposed into one MDP for the upper level and M to M(M-1) MDPs for the lower level, depending on the structure of the two-level MDP. The upper-level MDP is solved by time aggregation, a technique introduced in a recent paper Cao, X.-R., Ren, Z. Y., Bhatnagar, S., Fu, M., & Marcus, S. (2002). A time aggregation approach to Markov decision processes. Automatica, 38(6), 929-943.], and the lower-level MDPs are solved by embedded Markov chains.
Keywords:Time aggregation  Markov decision processes  Two-level systems  Coupled decisions  Policy iteration  Performance potentials
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号