首页 | 官方网站   微博 | 高级检索  
     


Kinematic Design and Analysis of a 7 Degree-of-Freedom Dual-Stage Inspection Manipulator for Dexterous Subsea Applications
Authors:T Asokan  G Seet  V Iastrebov  R Senanayake
Affiliation:1. Robotic Research Centre, School of Mechanical and Production Engg., Nanyang Technological University, Singapore, 639 798
Abstract:This paper describes the design of a 7 degree-of-freedom (d.o.f) manipulator for underwater inspection applications. The functional requirements of an underwater manipulator for subsea inspection are discussed and the desired performance requirements identified. The inspection process of a weld joint using a manipulator is described and the desirable attributes of a 5 d.o.f manipulator for the inspection process established. A novel kinematic structure, for Underwater Robotic Vehicle (URV) operation, having a 2 d.o.f launching stages and a 5 d.o.f inspection stage is proposed for the manipulator. This configuration increases the dexterity, without compromising on the total reach of the manipulator. The kinematic structure of the 7 d.o.f, 2 stage, manipulator is presented. A hybrid power actuation is proposed for the manipulator to exploit the benefits of both hydraulic as well as electric actuators. Kinematic analysis of the manipulator is presented. The link dimensions of the inspection stage manipulator is done on the basis of kinematic performance indices of the manipulator. The novel kinematic structure and the hybrid power actuation strategy results in a power efficient, dexterous manipulator for underwater applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号