首页 | 官方网站   微博 | 高级检索  
     


Non-decoupled Locomotion and Manipulation Planning for Low-Dimensional Systems
Authors:Karim Bouyarmane  Abderrahmane Kheddar
Affiliation:1.Université de Lorraine, CNRS,Vand?uvre-les-Nancy,France;2.CNRS-AIST Joint Robotics Laboratory (JRL),Tsukuba,Japan;3.LIRMM - Interactive Digital Human Group,CNRS-University of Montpellier,Montpellier,France
Abstract:We demonstrate the possibility of solving planning problems by interleaving locomotion and manipulation in a non-decoupled way. We choose three low-dimensional minimalistic robotic systems and use them to illustrate our paradigm: a basic one-legged locomotor, a two-link manipulator with a manipulated object, and a simultaneous locomotion-and-manipulation system. Using existing motion planning and control methods initially designed for either locomotion or manipulation tasks, we see how they apply to both our locomotion-only and manipulation-only systems through parallel derivations, and extend them to the simultaneous locomotion-and-manipulation system. Motion planning is solved for these three systems using two different methods: (i) a geometric path-planning-based one, and (ii) a kinematic control-theoretic-based one. Motion control is then derived by dynamically realizing the geometric paths or kinematic trajectories under the Couloumb friction model using torques as control inputs. All three methods apply successfully to all three systems, showing that the non-decoupled planning is possible.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号