首页 | 官方网站   微博 | 高级检索  
     

Multiobjective optimization using an immunodominance and clonal selection inspired algorithm
基金项目:Supported by the National Natural Science Foundation of China (Grant Nos. 60703107 and 60703108), the National High Technology Research and Development Program (863 Program) of China (Grant No. 2006AA01Z107), the National Basic Research Program (973 Program) of China (Grant No. 2006CB705700) and the Program for Cheung Kong Scholars and Innovative Research Team in University (Grant No. IRT0645)
摘    要:Based on the mechanisms of immunodominance and clonal selection theory, we propose a new multiobjective optimization algorithm, immune dominance clonal multiobjective algorithm (IDCMA). IDCMA is unique in that its fitness values of current dominated individuals are assigned as the values of a custom distance measure, termed as Ab-Ab affinity, between the dominated individuals and one of the nondominated individuals found so far. According to the values of Ab-Ab affinity, all dominated individuals (antibodies) are divided into two kinds, subdominant antibodies and cryptic antibodies. Moreover, local search only applies to the subdominant antibodies, while the cryptic antibodies are redundant and have no function during local search, but they can become subdominant (active) antibodies during the subsequent evolution. Furthermore, a new immune operation, clonal proliferation is provided to enhance local search. Using the clonal proliferation operation, IDCMA reproduces individuals and selects their improved maturated progenies after local search, so single individuals can exploit their surrounding space effectively and the newcomers yield a broader exploration of the search space. The performance comparison of IDCMA with MISA, NSGA-Ⅱ, SPEA, PAES, NSGA, VEGA, NPGA, and HLGA in solving six well-known multiobjective function optimization problems and nine multiobjective 0/1 knapsack problems shows that IDCMA has a good performance in converging to approximate Pareto-optimal fronts with a good distribution.

关 键 词:多目标优化  免疫优势  无性繁殖选择  人造免疫系统

Multiobjective optimization using an immunodominance and clonal selection inspired algorithm
Authors:MaoGuo Gong  LiCheng Jiao  WenPing Ma and HaiFeng Du
Affiliation:(1) Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Institute of Intelligent Information Processing, Xidian University, Xi’an, 710071, China;(2) School of Public and Administration, Xi’an Jiaotong University, Xi’an, 710049, China
Abstract:Based on the mechanisms of immunodominance and clonal selection theory, we propose a new multiobjective optimization algorithm, immune dominance clonal multiobjective algorithm (IDCMA). IDCMA is unique in that its fitness values of current dominated individuals are assigned as the values of a custom distance measure, termed as Ab-Ab affinity, between the dominated individuals and one of the nondominated individuals found so far. According to the values of Ab-Ab affinity, all dominated individuals (antibodies) are divided into two kinds, subdominant antibodies and cryptic antibodies. Moreover, local search only applies to the subdominant antibodies, while the cryptic antibodies are redundant and have no function during local search, but they can become subdominant (active) antibodies during the subsequent evolution. Furthermore, a new immune operation, clonal proliferation is provided to enhance local search. Using the clonal proliferation operation, IDCMA reproduces individuals and selects their improved maturated progenies after local search, so single individuals can exploit their surrounding space effectively and the newcomers yield a broader exploration of the search space. The performan ce comparison of IDCMA with MISA, NSGA-II, SPEA, PAES, NSGA, VEGA, NPGA, and HLGA in solving six well-known multiobjective function optimization problems and nine multiobjective 0/1 knapsack problems shows that IDCMA has a good performance in converging to approximate Pareto-optimal fronts with a good distribution. Supported by the National Natural Science Foundation of China (Grant Nos. 60703107 and 60703108), the National High Technology Research and Development Program (863 Program) of China (Grant No. 2006AA01Z107), the National Basic Research Program (973 Program) of China (Grant No. 2006CB705700) and the Program for Cheung Kong Scholars and Innovative Research Team in University (Grant No. IRT0645)
Keywords:multiobjective optimization  immunodominance  clonal selection  artificial immune systems  evolutionary algorithms
本文献已被 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号