首页
|
官方网站
微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于实例迁移的数据流分类挖掘方法
作者姓名:
刘三民
刘余霞
作者单位:
安徽工程大学计算机与信息学院, 安徽 芜湖 241000
基金项目:
国家自然科学基金资助项目(71371012);安徽省自然科学基金资助项目(1608085MF147);教育部人文社科基金资助项目(18YJA630114);安徽省提升计划一般项目(TSKJ2016B05)
摘 要:
为解决数据流分类过程中样本标注和概念漂移问题,提出了一种基于实例迁移的数据流分类挖掘模型.首先,该模型用支持向量机作学习器,用所得分类模型中的支持向量构建源领域,待分类的当前数据块为目标域.然后,借助互近邻思想在源域中挑选目标域中样本的真邻居进行实例迁移,避免发生负迁移.最后,通过合并目标域和迁移样本形成训练集,提高标注样本数量,增强模型的泛化能力.理论分析和实验结果表明,所提方法具有可行性,相比其它学习方法在分类准确性方面更具优势.
关 键 词:
互近邻
迁移学习
数据流分类
增量学习
收稿时间:
2018-10-08
本文献已被
维普
等数据库收录!
点击此处可从《信息与控制》浏览原始摘要信息
点击此处可从《信息与控制》下载全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号
京公网安备 11010802026262号