首页 | 官方网站   微博 | 高级检索  
     


Conjunctions of Unate DNF Formulas: Learning and Structure
Authors:Aaron Feigelson  Lisa Hellerstein
Affiliation:Department of ECE, Northwestern University, Evanston, Illinois, 60208-3118
Abstract:A central topic in query learning is to determine which classes of Boolean formulas are efficiently learnable with membership and equivalence queries. We consider the class kconsisting of conjunctions ofkunate DNF formulas. This class generalizes the class ofk-clause CNF formulas and the class of unate DNF formulas, both of which are known to be learnable in polynomial time with membership and equivalence queries. We prove that 2can be properly learned with a polynomial number of polynomial-size membership and equivalence queries, but can be properly learned in polynomial time with such queries if and only if P=NP. Thus the barrier to properly learning 2with membership and equivalence queries is computational rather than informational. Few results of this type are known. In our proofs, we use recent results of Hellersteinet al.(1997,J. Assoc. Comput. Mach.43(5), 840–862), characterizing the classes that are polynomial-query learnable, together with work of Bshouty on the monotone dimension of Boolean functions. We extend some of our results to kand pose open questions on learning DNF formulas of small monotone dimension. We also prove structural results for k. We construct, for any fixedk2, a class of functionsfthat cannot be represented by any formula in k, but which cannot be “easily” shown to have this property. More precisely, for any functionfonnvariables in the class, the value offon any polynomial-size set of points in its domain is not a witness thatfcannot be represented by a formula in k. Our construction is based on BCH codes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号