首页 | 官方网站   微博 | 高级检索  
     


Ant colony optimisation to identify genetic variant association with type 2 diabetes
Authors:Jacqueline Christmas  Timothy M Frayling
Affiliation:a School of Engineering, Computing and Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF2EF, UK
b Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter EX1 2LU, UK
Abstract:Around 1.8 million people in the UK have type 2 diabetes, representing about 90% of all diabetes cases in the UK. Genome wide association studies have recently implicated several new genes that are likely to be associated with this disease. However, common genetic variants so far identified only explain a small proportion of the heritability of type 2 diabetes. The interaction of two or more gene variants, may explain a further element of this heritability but full interaction analyses are currently highly computationally burdensome or infeasible. For this reason this study investigates an ant colony optimisation (ACO) approach for its ability to identify common gene variants associated with type 2 diabetes, including putative epistatic interactions. This study uses a dataset comprising 15,309 common (>5% minor allele frequency) SNPs from chromosome 16, genotyped in 1924 type 2 diabetes cases and 2938 controls. This chromosome contains two previously determined associations, one of which is replicated in additional samples. Although no epistatic interactions have been previously reported on this dataset, we demonstrate that ACO can be used to discover single SNP and plausible epistatic associations from this dataset and is shown to be both accurate and computationally tractable on large, real datasets of SNPs with no expert knowledge included in the algorithm.
Keywords:Ant colony optimisation  Bioinformatics  Single nucleotide polymorphisms  Genome wide association studies
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号