首页 | 官方网站   微博 | 高级检索  
     

析水及溶解逸出对催化惰化系统性能影响
引用本文:彭孝天,冯诗愚,陈晨,张瑞华,潘俊,王洋洋.析水及溶解逸出对催化惰化系统性能影响[J].哈尔滨工业大学学报,2021,53(6):71-76.
作者姓名:彭孝天  冯诗愚  陈晨  张瑞华  潘俊  王洋洋
作者单位:南京航空航天大学 航空学院,南京 210016;飞行器环境控制与生命保障工业和信息化部重点实验室南京航空航天大学,南京 210016;航空机电系统综合航空科技重点实验室南京机电液压工程研究中心,南京 211106
基金项目:国家自然科学基金民航联合基金(U1933121);江苏省研究生科研与实践创新计划项目(KYCX19_0198);南京航空航天大学研究生拔尖创新人才培养“引航计划”跨学科创新基金项目(KXKCXJJ202004)
摘    要:了解析水及气体溶解逸出对新型催化惰化系统性能影响,可以为系统设计提供借鉴.首先,设计了低温可控耗氧催化惰化系统流程,然后,以油箱中抽吸气体的摩尔流量为基准,推导了流经催化反应器、冷却器前后各气体组分的流量关系,并通过状态方程及气体平衡溶解关系,确定油箱气相空间各气体浓度变化.另外,在燃油中有、无气体溶解逸出情况下,研究了风机流量、载油率两个关键参数对系统中产水及冷却性能的影响.研究结果表明:油箱气相空间的氧浓度随惰化的进行逐渐降低,水蒸气摩尔分数随惰化时间逐渐增加但增长速率逐渐变缓;催化反应器和冷却器所需的冷却功率、催化反应器出口气体的相对湿度、冷却器中析出的液态水量均随时间逐渐降低;另外,燃油中氧气、氮气、二氧化碳等气体的溶解逸出对系统性能影响较大,并且考虑水析出时,冷却器中所需的冷却气体量较不考虑水析出时要高约33%.因此今后在设计催化惰化系统时,燃油中气体的溶解逸出及液态水析出对惰化系统性能影响均不容忽略.

关 键 词:惰化  催化燃烧  航空燃油  析水  溶解逸出
收稿时间:2019/9/10 0:00:00

Effect of water precipitation and gas dissolution and escape on performance of catalytic inerting system
PENG Xiaotian,FENG Shiyu,CHEN Chen,ZHANG Ruihu,PAN Jun,WANG Yangyang.Effect of water precipitation and gas dissolution and escape on performance of catalytic inerting system[J].Journal of Harbin Institute of Technology,2021,53(6):71-76.
Authors:PENG Xiaotian  FENG Shiyu  CHEN Chen  ZHANG Ruihu  PAN Jun  WANG Yangyang
Affiliation:College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China ;Key Laboratory of Aircraft Environmental Control and Life Support Nanjing University of Aeronautics and Astronautics, Ministry of Industry and Information Technology, Nanjing 210016, China;Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration Nanjing Engineering Institute of Aircraft Systems, Nanjing 211106, China
Abstract:The understanding of the influence of water and gas dissolution and escape on the performance of a new type of catalytic inerting system can provide guidance for the design of the system. First, a low temperature controllable oxygen consumed catalytic inerting system process was designed. Then, based on the molar flow rate of the pumped gas in the fuel tank, the flow relationship of each gas component before and after flowing through the catalytic reactor and the cooler was deduced, and the concentration variation of each gas in the gas phase space of the fuel tank was determined through the gas state equation and the gas equilibrium dissolution relationship. In addition, in the cases of fuel with or without gas dissolution and escape, the effect of two key parameters, i.e., flow rate and oil loading rate of fan, on the water production and cooling performance of the system was studied. Results show that the oxygen concentration in the gas phase space of the tank decreased with the inerting process, and the molar fraction of the water vapor increased while the growth rate gradually slowed down. The cooling power required in the reactor and the cooler, the relative humidity at the outlet of the reactor, and the water removal in the cooler all decreased with time. Besides, the dissolved and escaped gases such as oxygen, nitrogen, and carbon dioxide in the fuel had a great impact on the system performance, and the amount of cooling gas required in the cooler was about 33% higher when water precipitation was taken into account. Therefore, the influence of gas dissolution and escape and water precipitation on the performance of the inerting system should not be neglected in the design of catalytic inerting systems in the future.
Keywords:inerting  catalytic combustion  aviation fuel  water precipitation  gas dissolution and escape
本文献已被 CNKI 等数据库收录!
点击此处可从《哈尔滨工业大学学报》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号