首页 | 官方网站   微博 | 高级检索  
     


High permittivity BaTiO3 and BaTiO3-polymer nanocomposites enabled by cold sintering with a new transient chemistry: Ba(OH)2?8H2O
Authors:Takao Sada  Kosuke Tsuji  Arnaud Ndayishimiye  Zhongming Fan  Yoshihiro Fujioka  Clive A Randall
Affiliation:1. Monozukuri R&D Laboratory, KYOCERA Corporation, Kirishima, Kagoshima 899-4312, Japan;2. Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
Abstract:Cold sintering process (CSP) offers a promising strategy for the fabrication of innovative and advanced high permittivity dielectric nanocomposite materials. Here, we introduce Ba(OH)2?8H2O hydrated flux as a new transient chemistry that enables the densification of BaTiO3 in a single step at a temperature as low as 150 °C. This remarkably low temperature is near its Curie transition of 125 °C, associated with a displacive phase transition. The cold sintered BaTiO3 shows a relative density of 95 % and a room temperature relative permittivity over 1000. This new hydrated flux permits the fabrication of a unique dense BaTiO3-polymer nanocomposite with a high volume fraction of ceramics ((1-x) BaTiO3x PTFE, with x = 0.05). The composite exhibits a relative permittivity of approximately 800, at least an order of magnitude higher than previous reports on polymer composites with BaTiO3 nanoparticle fillers that are typically well below 100. Unique high permittivity dielectric nanocomposites with enhanced resistivities can now be designed using polymers to engineer grain boundaries and CSP as a processing method opening up new possibilities in dielectric materials design.
Keywords:Cold sintering  Ceramic-polymer composite  Ceramic capacitor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号