首页 | 官方网站   微博 | 高级检索  
     


Synthesis and characterization of main‐chain,second‐order,nonlinear optical polyurethanes with isolation moieties and zigzag structures
Authors:Ying Li  Ting Yu  Zuojia Li  Zhenguo Wang  Qiang Peng
Affiliation:Key Laboratory of Green Chemistry and Technology of the Ministry of Education, College of Chemistry, and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
Abstract:In this study, two main‐chain second‐order nonlinear optical (NLO) polyurethanes were successfully prepared with indole‐based chromophores. The introduced phenyl isolation group and the continuous zigzag polymer backbone were found to be helpful for effectively decreasing the intermolecular dipole–dipole interactions and enhancing the NLO properties of the resulting polymers. The studied polymers exhibited good optical transparency, high thermal stability, and excellent NLO effects; this indicated that the nonlinearity–stability trade‐off and nonlinearity–transparency trade‐off could be alleviated by this newly designed polymer system. Poly{4‐anilinocarbonylN‐ethoxyl‐5‐phenyl‐3‐azo(2′‐oxyethylene‐4′‐nitrobenzene)indole]carbonylimino} with a zigzag backbone showed a large second harmonic generation coefficient (d33) value of 88.4 pm/V. However, poly{5‐naphthyliminocarbonylN‐ethoxyl‐5‐phenyl‐3‐azo(2′‐oxyethylene‐4′‐nitrobenzene)indole]carbonylimino} (PUAZN) with a continuous zigzag structure exhibited a higher d33 value of 116.2 pm/V, which was attributed to the unique rigid and zigzag linkage of 1,5‐naphthalene as the isolation spacer. The enhanced NLO efficiency and relatively longer term temporal stability made PUAZN as a promising candidate for practical applications in photonic devices. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42974.
Keywords:copolymers  functionalization of polymers  optical properties  polyurethanes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号