首页 | 官方网站   微博 | 高级检索  
     


Gas separation using sol-gel derived microporous zirconia membranes with high hydrothermal stability☆
Authors:Li Li  Hong Qi
Affiliation:Membrane Science and Technology Research Center, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
Abstract:A microporous zirconia membrane with hydrogen permeance about 5×10-8 mol·m-2·s-1·Pa-1, H2/CO2 permselectivity of ca. 14, and excellent hydrothermal stability under steam pressure of 100 kPa was fabricated via polymeric sol-gel process. The effect of calcination temperature on single gas permeance of sol-gel derived zirconia membranes was investigated. Zirconia membranes calcined at 350℃ and 400℃ showed similar single gas permeance, with permselectivities of hydrogen towards other gases, such as oxygen, nitrogen, methane, and sulfur hexafluoride, around Knudsen values. A much lower CO2 permeance (3.7×10-9 mol·m-2·s-1·Pa-1) was observed due to the interaction between CO2 molecules and pore wall of membrane. Higher calcination temperature, 500℃, led to the formation of mesoporous structure and, hence, the membrane lost itsmolecular sieving property towards hydrogen and carbon dioxide. The stability of zirconia membrane in the presence of hot steam was also investigated. Exposed to 100 kPa steam for 400 h, the membrane performance kept unchanged in comparison with freshly prepared one, with hydrogen and carbon dioxide permeances of 4.7×10-8 and~3×10-9 mol·m-2·s-1·Pa-1, respectively. Both H2 and CO2 permeances of the zirconia membrane decreased with exposure time to 100 kPa steam. With a total exposure time of 1250 h, the membrane presented hydrogen permeance of 2.4×10-8 mol·m-2·s-1·Pa-1 and H2/CO2 permselectivity of 28, indicating that the membrane retains its microporous structure.
Keywords:Microporous membrane  Zirconia  Gas separation  Sol-gel process  Hydrothermal stability
本文献已被 万方数据 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号