首页 | 官方网站   微博 | 高级检索  
     


A unified framework for detection, isolation and compensation of actuator faults in uncertain particulate processes
Authors:Arthi Giridhar
Affiliation:Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Avenue, Davis, CA 95616-5294, USA
Abstract:This paper presents a methodology for the robust detection, isolation and compensation of control actuator faults in particulate processes described by population balance models with control constraints and time-varying uncertain variables. The main idea is to shape the fault-free closed-loop process response via robust feedback control in a way that enables the derivation of performance-based fault detection and isolation (FDI) rules that are less sensitive to the uncertainty. Initially, an approximate finite-dimensional system that captures the dominant process dynamics is derived and decomposed into interconnected subsystems with each subsystem directly influenced by a single manipulated input. The decomposition is facilitated by the specific structure of the process input operator. A robustly stabilizing bounded feedback controller is then designed for each subsystem to enforce an arbitrary degree of asymptotic attenuation of the effect of the uncertainty in the absence of faults. The synthesis leads to (1) an explicit characterization of the fault-free behavior of each subsystem in terms of a time-varying bound on an appropriate Lyapunov function and (2) an explicit characterization of the robust stability region in terms of the control constraints and the size of the uncertainty. Using the fault-free Lyapunov dissipation bounds as thresholds for FDI in each subsystem, the detection and isolation of faults in a given actuator is accomplished by monitoring the evolution of the system within the stability region and declaring a fault if the threshold is breached. The thresholds are linked to the achievable degree of asymptotic uncertainty attenuation and can therefore be properly tuned by proper tuning of the controllers, thus making the FDI criteria less sensitive to the uncertainty. The robust FDI scheme is integrated with a robust stability-based controller reconfiguration strategy that preserves closed-loop stability following FDI. Finally, the implementation of the fault-tolerant control architecture on the particulate process is discussed and the proposed methodology is applied to the problem of robust fault-tolerant control of a continuous crystallizer with a fines trap.
Keywords:Particulate processes  Particle size distribution  Population balance models  Model reduction  Method of moments  Robust FDI  Robust control  Model uncertainty  Actuator reconfiguration  Crystallization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号