首页 | 官方网站   微博 | 高级检索  
     


Biflavonoid-Induced Disruption of Hydrogen Bonds Leads to Amyloid-β Disaggregation
Authors:Peter K Windsor  Stephen P Plassmeyer  Dominic S Mattock  Jonathan C Bradfield  Erika Y Choi  Bill R Miller  III  Byung Hee Han
Affiliation:1.Department of Chemistry, Truman State University, Kirksville, MO 63501, USA; (P.K.W.); (S.P.P.); (D.S.M.); (J.C.B.);2.Department of Pharmacology, A.T. Still University, Kirksville, MO 63501, USA;
Abstract:Deposition of amyloid β (Aβ) fibrils in the brain is a key pathologic hallmark of Alzheimer’s disease. A class of polyphenolic biflavonoids is known to have anti-amyloidogenic effects by inhibiting aggregation of Aβ and promoting disaggregation of Aβ fibrils. In the present study, we further sought to investigate the structural basis of the Aβ disaggregating activity of biflavonoids and their interactions at the atomic level. A thioflavin T (ThT) fluorescence assay revealed that amentoflavone-type biflavonoids promote disaggregation of Aβ fibrils with varying potency due to specific structural differences. The computational analysis herein provides the first atomistic details for the mechanism of Aβ disaggregation by biflavonoids. Molecular docking analysis showed that biflavonoids preferentially bind to the aromatic-rich, partially ordered N-termini of Aβ fibril via the π–π interactions. Moreover, docking scores correlate well with the ThT EC50 values. Molecular dynamic simulations revealed that biflavonoids decrease the content of β-sheet in Aβ fibril in a structure-dependent manner. Hydrogen bond analysis further supported that the substitution of hydroxyl groups capable of hydrogen bond formation at two positions on the biflavonoid scaffold leads to significantly disaggregation of Aβ fibrils. Taken together, our data indicate that biflavonoids promote disaggregation of Aβ fibrils due to their ability to disrupt the fibril structure, suggesting biflavonoids as a lead class of compounds to develop a therapeutic agent for Alzheimer’s disease.
Keywords:neurodegenerative disease  Alzheimer’  s disease  amyloid aggregation  anti-amyloid compounds  drug discovery  naturally occurring flavonoids  polyphenols  amentoflavone
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号