首页 | 官方网站   微博 | 高级检索  
     


Superoxide Reductase: Different Interaction Modes with its Two Redox Partners
Authors:Dr Rui M Almeida  Prof Paola Turano  Prof Isabel Moura  Prof José J G Moura  Dr Sofia R Pauleta
Affiliation:1. REQUIMTE/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829‐516 Caparica (Portugal);2. Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino (Italy);3. Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)
Abstract:Anaerobic organisms have molecular systems to detoxify reactive oxygen species when transiently exposed to oxygen. One of these systems is superoxide reductase, which reduces O2.? to H2O2 without production of molecular oxygen. In order to complete the reduction of superoxide anion, superoxide reductase requires an electron, delivered by its redox partners, which in Desulfovibrio gigas are rubredoxin and/or desulforedoxin. In this work, we characterized the interaction of Desulfovibrio gigas superoxide reductase with both electron donors by using steady‐state kinetics, 2D NMR titrations, and backbone relaxation measurements. The rubredoxin surface involved in the electron transfer complex with superoxide reductase comprises the solvent‐exposed hydrophobic residues in the vicinity of its metal center (Cys9, Gly10, Cys42, Gly43, and Ala44), and a Kd of 3 μM at 59 mM ionic strength was estimated by NMR. The ionic strength dependence of superoxide‐mediated rubredoxin oxidation by superoxide reductase has a maximum kapp of (37±12) min?1 at 157 mM . Relative to the electron donor desulforedoxin, its complex with superoxide reductase was not detected by chemical shift perturbation, though this protein is able to transfer electrons to superoxide reductase with a maximum kapp of (31±7) min?1 at an ionic strength of 57 mM . Competition experiments using steady‐state kinetics and NMR spectroscopy (backbone relaxation measurements and use of a paramagnetic relaxation enhancement probe) with Fe‐desulforedoxin in the presence of 15N‐Zn‐rubredoxin showed that these two electron donors compete for the same site on the enzyme surface, as shown in the model structure of the complex generated by using restrained molecular docking calculations. These combined strategies indicate that the two small electron donors bind in different manners, with the desulforedoxin complex being a short lived electron transfer complex or more dynamic, with many equivalent kinetically competent orientations.
Keywords:desulforedoxin  electron‐transfer complexes  NMR restrained docking  paramagnetic relaxation enhancement  rubredoxin  superoxide reductases
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号