首页 | 官方网站   微博 | 高级检索  
     


Effects of dopants with various valences on densification behavior and phase composition of a ZrO2–SiO2 nanocrystalline glass-ceramic
Affiliation:1. School of Materials Science and Engineering, Central South University, Changsha, 410083, China;2. Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, 751 21, Sweden
Abstract:Effects of dopants with different valences on the densification behavior and phase composition of a ZrO2–SiO2 nanocrystalline glass-ceramic (NCGC) during pressureless sintering were investigated in this study. The raw powder of Ca2+, La3+, Ce4+ and Ta5+ ions doped ZrO2–SiO2 (referred to as Ca-ZS, La-ZS, Ce-ZS, Ta-ZS, respectively) and pure ZrO2–SiO2 (PZS) sample were synthesized by sol-gel method, followed by pressureless sintering. Compared with the PZS sample, doping of Ca2+ and La3+ ions significantly promoted the densification of the NCGCs. The “densification promotion” effect was attributed to the formation of oxygen vacancies and the decrease of SiO2 viscosity due to doping of aliovalent cations. The dopants with various valences showed significant effects on the phase compositions of the NCGCs during sintering. Doping of Ca2+ ion accelerated the reaction kinetics between ZrO2 nanocrystallites and amorphous SiO2 to yield ZrSiO4. The La3+ ion acted as destabilizer of t-ZrO2, which resulted in a rapid tetragonal (t) to monoclinic (m) ZrO2 phase transformation during sintering, while in the Ta5+ and Ce4+ ions doped sample, the phase transformation occurred gradually. All the doping ions increased the lattice parameters and the volume of t-ZrO2 unit cell, while the effects of the doping ions on the lattice parameters of m-ZrO2 unit cell were more complex.
Keywords:Nanocrystalline glass-ceramic  Dopant  Densification  Microstructure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号